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Abstract

Through a simulation-based study we develop a statistical model-based quantification method
for atomic resolution first moment scanning transmission electron microscopy (STEM) images.
This method uses the uniformly weighted least squares estimator to determine the unknown
structure parameters of the images and to isolate contributions from individual atomic columns.
In this way, a quantification of the projected potential per atomic column is achieved. Since the
integrated projected potential of an atomic column scales linearly with the number of atoms it
contains, it can serve as a basis for atom counting. The performance of atom counting from first
moment STEM imaging is compared to that from traditional HAADF STEM in the presence of
noise. Through this comparison, we demonstrate the advantage of first moment STEM images
to attain more precise atom counts. Finally, we compare the integrated potential extracted from
first-moment images of a wedge-shaped sample to those values from the bulk crystal. The
excellent agreement found between these values proves the robustness of using bulk crystal
simulations as a reference library. This enables atom counting for samples with different shapes

by comparison with these library values.



Introduction

Over the past decade, STEM has become one of the most powerful tools for the characterization
of complex nanomaterials thanks to its ability to acquire images down to sub-nanometer
resolution [1-3]. During image acquisition, a sharply-focused electron probe scans across the
sample and electrons scattered at certain angles are collected by detectors at each scanning
position. The collected electrons are then used to generate images containing features at the
level of individual atoms. By selecting an annular detector with desired collection range,
various STEM imaging modes are available [4]. HAADF STEM in particular has become a
popular technique because it provides images that are directly interpretable. Previous studies
have established that the contrast of HAADF STEM images strongly depends on the atomic

number and the number of atoms in the atomic columns [5-10].

Nevertheless, visual interpretation of atomic-resolution HAADF STEM images is often
insufficient to fully reveal the structural information of a specimen. This limitation hinders a
detailed understanding of the structure-property relationship in nanomaterials since their
chemical and physical properties are intrinsically determined by their structural and chemical
composition. To address this inadequacy, model-based quantification methods for HAADF
STEM images have been developed. These methods enable high precision measurements of
material structure parameters using statistical parameter estimation theory [11-14]. This theory
makes use of a quantitative model which is parametric in the position, intensity and width of
the image intensity peaks. By fitting this model to the observed STEM images, the total
scattering intensity per atomic column can be calculated. This approach has been used to boost
the quantitative analysis of HAADF STEM data and to solve diverse problems in material

science.



Successful quantification of image intensities has enabled compositional mapping of crystals at
atomic resolution [15,16]. More importantly, it also provides a roadmap to perform atom
counting from HAADF STEM images viewed along a zone axis [17,18]. By combining
counting results from more than one viewing direction, the 3D atomic arrangement of
crystalline nanoparticles was successfully reconstructed with single atom sensitivity [19].
Efforts have been made to achieve 3D reconstructions from a single projection [20—23] since
acquiring HAADF STEM images from different viewing directions is not always feasible for
nanostructures that are very beam sensitive or are observed in-situ, e.g. under the flow of a gas.
Recent examples include the successful reconstruction of a Pt nanoparticle in different gaseous
environments [24] and supported Au nanoparticles at high temperature [25]. However, the
nature of HAADF STEM, which relies on high-angle scattered electrons for imaging, imposes
certain limitations. Firstly, it is not suitable for weakly-scattering samples [26]. Secondly,
because the atomic column intensities in HAADF STEM scale with the square of the atomic
number [27], light columns are easily obscured by the stronger intensity of heavier columns,
making it challenging to simultaneously estimate the structural parameters for both light and

heavy atomic columns.

Recent advances in the design of pixelated electron detectors have introduced new possibilities
to overcome these limitations. A pixelated detector contains a large number of pixels, where
each pixel works as an individual detector. Instead of collecting electrons only within a certain
range of scattering angles, a pixelated detector can record the full convergent beam electron
diffraction (CBED) pattern at each scanning position, resulting in a 4D dataset (2D CBED
patterns on a 2D scanning grid). Such datasets offer significant flexibility in generating diverse
STEM imaging modes, either by feeding the datasets into computational reconstruction
algorithms or applying virtual detectors to each CBED pattern [28,29]. A representative for the

former type of method is ptychography, recently demonstrated to be able to retrieve information



about the sample along its thickness direction [30,31], but its computational complexity is
considerable and its robustness for atom counting, particularly at lower doses, remains unclear.
A notable example of the latter type is first moment STEM imaging which describes the center-
of-mass (COM) shift within the CBED patterns at each scanning position. First moment
imaging has been used to solve versatile problems in materials science, for instance, local
mapping of electric fields [32,33], visualization of magnetic structures [34], measurement of
magnetic domains [35], imaging of 2D materials [36] and determination of charge densities at
the atomic scale [37]. Given model-based parameterization has proven fruitful for quantitative
HAADF STEM imaging, as discussed earlier, it is worth exploring whether a similar model-
based parameterization is possible for first moment STEM images. Within the phase object
approximation, the first moment STEM images are proportional to the gradient of the atomic
column projected potential convolved with the probe intensity, which scales linearly with both
the number of atoms in the atomic columns and the atomic number [33,36,38—41]. As compared
to HAADF STEM imaging, this reduces the signal difference between light and heavy atomic
columns, potentially enabling parameter-estimation-based atom counting to be extended to

samples with both heavy element columns and light element columns present.

In this work, we develop a model-based quantification method for first moment STEM images,
highlighting the advantages of using this imaging mode for atom counting. Our method starts
with fitting a parametric model to simulated COM images. This enables the determination of
structure parameters of the images, including the width, height and position of an atomic
column. The integrated potential per atomic column is then calculated from these parameters,
and its response is studied as a function of thickness. In this manner, the possibility of using
COM images for atom counting is thoroughly examined. Its precision is further compared to

HAADF STEM imaging in the presence of noise. Finally, the integrated potential from a wedge-



shaped specimen is compared to values obtained from bulk crystal in simulation, demonstrating

the robustness of our method for atom counting in specimens of varying shapes.

Methods

4D-STEM simulation and synthesis of COMx(y) images

Using aluminum as an example material, 4D STEM datasets of a crystal viewed along the [001]
zone axis were simulated up to a thickness of 40 atoms, i.e. about 16 nm. All simulations were
performed with the MULTEM software which uses the multislice algorithm within the frozen-
phonon framework [42,43]. For each simulation, the defocus of the incoming electron probe is
set to half the overall thickness, providing optimal contrast for the COM images [29,39,44].
Additional simulation details are provided in Table 1. An aberration-free probe is assumed,
being an appropriate approximation for an aberration-corrected probe whose aberrations are

well-balanced in the probe-forming aperture.



Table 1 Settings used for the multislice simulations in the MULTEM software

Parameter Value
Acceleration voltage 300 kV
Defocus Half of overall thickness
Spherical aberration 0 mm
Semi-convergence angle 20 mrad
FWHM of the source spatial incoherence 0.5A
Number of unit cells per supercell TX7
Probe step size 0.2025 A
Number of probe position per unitcell 20x20
Pixel size in reciprocal space 0.0353 A
Number of pixels in reciprocal space 512%x 512
Maximum scattering angle along x and y direction 62.5 mrad
when calculating first moment image
Root mean square displacement Al atom 0.085 A
Number of phonon configurations 30

The 4D dataset for a wedge-shaped aluminum structure in the [001] zone axis was simulated
under the same set of microscope parameters (acceleration voltage, aberrations and semi-
convergence angle). More detailed simulation parameters are provided in Table S1. Figure 1
shows the input structure of the aluminum wedge (left) and a map of the number of atoms in

each atomic column (right).
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Figure 1. Input structure of the aluminum wedge as a 3D model (left) and map of the number of atoms in each column
(right).

The simulated 4D dataset (Ipqx;), referring to the intensity of the CBED patterns at reciprocal
pixel (kp, kq) at probe position (xy,y;), for the crystal and the wedge were then convolved
with a 2D Gaussian function in real space to account for the spatial incoherence of the probe.
This involves extracting a synthetic real-space image Iy, for each reciprocal pixel (ky, kq) and
convolving it with the 2D Gaussian function. In practice, the COM shifting is typically
determined along two perpendicular directions, generating COMx and COMy images. To
synthesize these images, each CBED in the datasets was multiplied by the virtual first moment

STEM detectors as shown in Figure 2, corresponding to the [ky; k. ] axes in reciprocal space,

and followed by a summation over all entries.
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Figure 2. Virtual detectors to synthesize (a) COMx and (b) COMy image from a 4D dataset.
Mathematically, the construction is described by the following equation:
p Q p Q
kl — rq . 7kl — pq
ICOMx - Z Z kx Iqul ) ICOMy - Z Z ky Iqul Eq(l)
p=1q=1 p=1q=1

Here, kP9 and k;q are the x- and y- components of the spatial frequency at reciprocal pixel
(kp, kq), respectively. 1X . and I, my are the image intensity of COMx and COMy image at

pixel (k, 1) corresponding to probe position (X, y;).

Model-based parameter estimation

To precisely determine quantities such as atomic column positions, peak intensities and
integrated potentials from atomic-resolution STEM images, it can be fruitful to consider images
as data planes from which those parameters are measured using statistical parameter estimation
theory [13]. This procedure begins with constructing a parametric model, which depends on all
unknown structure parameters. This model describes the expectations of the pixel values in
STEM images. By fitting this model to the images using a criterion of goodness of fit, the
unknown structure parameters can be determined. For first moment STEM imaging, the COM

shift vector of each CBED is calculated, which in the phase object approximation is



proportional to the gradient of the projected potential of atomic columns convolved with the
probe intensity. Since the projected potential P(r, 8) of a crystal is peaked at the atomic column
positions [45,46] and the probe intensity should be rotationally symmetric, we will describe the
projected potential convolved with the probe intensity as a superposition of 2D Lorentzian

peaks:

M
P(r,0) = Z M (02 + (x =B, ) + (v - ﬁym)z)_% Eq(2)
m=1

with M the total number of atomic columns, r = (x,y)? corresponding to the STEM probe
position and 8 = By, s Bxpys Byyr s Bypgs P oves Prs M5 woes nu)T representing the vector of
unknow parameters. COMx(y) images are accordingly modelled as a superposition of the X(Y)
derivatives of this 2D Lorentzian function. The expectation model f;(8) for the COMx image,

giving the expectation value of pixel (k, l) at position (xi, ¥;), is then written as:

M

2 2.3
kCiOMx(e) = z -3 nm(xk - .me)(przn + (xk - ﬁxm) + (yl - .Bym) ) 2 Eq(3)
m=1
where 2—3’”, Pms Bx,, and B, are the height, width, x- and y- coordinates of the 2D Lorentzian

associated with the mth atomic column (the model for COMy follows trivially). The unknown
parameters of the original 2D Lorentzian peaks given by Eq(2) are found by fitting its X(Y)
derivative given in Eq(3) to the COMx(y) image. The integrated potential from the mth atomic

column is then calculated from the estimated width and height:

Vn =2m—5pp = 2m— Eq(4)

The advantage of using a 2D Lorentzian-based model to describe the projected potential
convolved with the probe intensity, as compared to the more commonly used 2D Gaussian-

based model, is discussed later in this paper.



Since the expectation models describing the COMx and COMy images share the same set of
unknown parameters, these models are fitted simultaneously to the COMx and COMy images,
hence resulting in a higher precision for the estimated parameters as compared to estimating
the parameters from the COMx or COMy images independently. Use is made of the uniformly
weighted least squares criterion, which evaluates the correspondence between the image and
the model for both COMx and COMy. The estimates § are given by the values of ¢ that

minimize the uniformly weighted least square criterion:

K L
0 =argmin > > [(wi?™ = @)+ (w™ - 1E @) | Ea(®)

k=11=1

where wiPM* and W,flOMy represent the observed values in the COMx and COMy images at

pixel (k, ). Direct implementation of this criterion for images containing a large number of
atomic columns is computationally expensive. Therefore, an efficient model estimation

algorithm introduced in [47] has been used.

Results

Atom counting for bulk crystals

As described in the previous section, 4D STEM datasets are simulated for aluminum in the [001]
zone axis up to a thickness of 40 atoms. Examples of simulated COMx and COMy images, and
the corresponding models evaluated at the estimated parameters, are shown in Figure 3(a-d).
The appearance of COM images can be described as follows [33,39,48]. When the incoming
electrons pass through the material, they encounter a net force of attraction towards the
partially-screened nuclei. Hence, the electron probe is deflected to the right as it passes to the
left of an atomic column resulting in more electrons being scattered to the positive region of

the virtual detector when considering COMx imaging (see Figure 2). The opposite occurs when

10



the probe passes to the right of a column. As a result, a contrast reversal is observed as the probe

scans across an atomic column, as seen in Figure 3(a, c).
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Figure 3. Central part of simulated (a) COMx and (c) COMy image for an aluminum crystal of 5 atoms thick with the
corresponding model shown in (b) and (d), respectively. (e) Integrated potential of the central atomic column as a
function of thickness.

For both COMx and COMy, the model (Figure 3(b, d)) agrees well with the simulated image
(Figure 3(a, ¢)) in terms of contrast features and the absolute signal range, demonstrating the
feasibility of fitting a superposition of x(y)- derivative of 2D Lorentzians to COMx(y) images.
Figure 3(e) shows the dependence of the integrated potential (Eq(4)) as a function of thickness
for the central atomic column. A monotonic increase is observed up to approximately 35 atoms
thickness (~14nm) before the value levels off. Extra simulations were also performed to
evaluate the robustness of the integrated potential with respect to the defocus (see section 2 in
the supporting info). The thickness range showing monotonic behavior is narrower than that for
HAADF STEM, where the scattering cross section increases (almost) linearly up to much larger
thicknesses [49,50]. The phase-object approximation predicts the COMx(y) image to be related
to the gradient of the projected potential of atomic columns, which would vary linearly with the
number of atoms in the column, but the domain of validity of this approximation is limited.
Previous work suggests that the breakdown of this approximation first manifests as a

quantitative underestimate for the projected potential [39,51]. In our parametric model, the
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projected potential of an atomic column is described by the volume of its Lorentzian peak, and
so the underestimation manifests as a saturation of the integrated potential at large thickness,
instead of a continuous increase, as seen in Figure3(e). (Aluminum is a relatively light scatterer;
the phase object approximation may break down sooner in more strongly scattering samples.)
Despite such saturation, the monotonic dependence of the integrated potential on thickness
demonstrates its utility as a quantitative measure to count the number of atoms from COMx and

COMy images, especially for thin samples.

To explore the potential advantages of using COMx and COMy images for atom counting, the
precision with which the integrated potential can be estimated from COM STEM is compared
to the precision of the integrated intensities estimated from the traditional HAADF STEM. For
this purpose, repetitive noise realizations are performed for both imaging modes. The procedure
to simulate noise realizations is summarized briefly below. In practice, the reciprocal pixels in
the 4D datasets represent statistically independent electron counting results [52]. For a finite
incident electron dose, the expectation model including the electron dose at reciprocal pixel

(kp, kq) at probe position (x,y;) equals:
Apgrr = NgAxAylygp Eq(6)

where Ny is the incident electron dose (e™/A?), Ax = Ay is the pixel size, and Ipgki 18 the
intensity of the wavefield at (k,, k) (normalized to sum to unity across the CBED pattern such
that, as per the Born interpretation, it gives the probability for the electron to be recorded in that
detector pixel). Due to the inevitable presence of electron counting noise in real experiments,
the actual pixel values fluctuate randomly and are considered to be Poisson distributed with
expectation value A4 [53]. For each thickness in the 4D STEM dataset, 100 noise realizations
are simulated at two dose levels (N; = 5 x 10° e™ /A%, and N; = 1 x 10° e~ /A?), followed

by a normalization with respect to the incident electron dose (i.e. dividing each noise realization

12



by the incident electron dose per pixel). This normalization places the noise realizations on the
same intensity scale as the raw 4D STEM simulations (I,qx;) hence allowing a direct
comparison between them. COMx and COMy images are then synthesized from the simulated
4D dataset with Poisson distributed noise. Examples of noise realizations for the COMx image
are shown in Figure 4 together with the corresponding image synthesized directly from the

simulated 4D dataset (in the absence of Poisson distributed noise).

From noise-free 4D dataset Examples of noise realizations
Nd =1-10° e /A2

Nd =5-10° e~ /A2

— - _ (mrad) (mrad)
W L] 04
B N L]
"8 # 0.2
g "8 ]
© W ] 0
Al N ¥
N ] 02
R " 0.4
NN #
e < 0.6
T " B » ] » ] w w - L] (mrad)
AR N 8 . 8N | &N # | L] & 4
e e .. [ E N ] ® ¥ &
o MEEESENEE N EEREN ¥ EER N 2
EREEE N .. | . L] L] & L
nnmnn e REREE N i RERN 0
o MENESEE S N ERES N ¥ RN
N EE S NN N 1 B EE # # § + 2
- . e . . . L] s & 8 N | ® L] W
8NN N . " & EE # # # 0 4

Figure 4. COMx images computed from the noise-free simulated 4D dataset for a thickness of 1 and 20 atoms, together

with examples noise realizations at Ny =5 x 10° e~ /A2 and Ny = 1 x 10° e~ /A2,

For each noise realization, the unknown parameters of Eq(3) have been estimated, which
enables us to evaluate the precision of the estimation. Figure S(a, b) show the distribution of
the integrated potential of the central atomic column for thicknesses between 5 and 20 atoms.
For comparison, HAADF STEM images of the same aluminum crystal thickness series have
been simulated under the same set of microscope parameters (see Table S2 for simulation
details), with noise realizations generated using a similar strategy and integrated intensities
estimated by the StatSTEM software [47]. The results are shown in Figure 5(c, d). In the
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absence of noise, these histograms would contain isolated components, with each component
corresponding to atomic columns having the same number of atoms. However, electron
counting noise as accounted for here, and other factors that exist in experiments such as
instability of the material under the electron beam and intensity transfer between neighboring
columns, can lead to a smearing out of the components [17]. Overlap between neighboring
components would negatively affect the accurate correlation between the integrated potential
(integrated intensity in case of HAADF STEM) and the number of atoms in a column, thus

increasing the probability of miscounting the number of atoms.
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Figure 5. Analysis of the estimated integrated potential (intensity) from repetitive noise realizations at the two dose
levels Ny = 5 x 10° e~ /A2 (left column) and Ny = 1 x 105 e~ /A% (right column). Histograms of the estimated
integrated potential from (a, b) COMx & COMy and integrated intensities from (c, d) HAADF STEM. (e, f) Relative

width as a function of thickness.
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Although smeared out, well-separated components are observed for COMx and COMy imaging
if the incident electron dose is sufficiently large, with each component generated by atomic
columns of the same thickness (i.e. containing the same number of atoms). When the dose is
reduced from 5 x 10° to 1 x 10% e~ /A?, slight overlap between neighboring components
appears, but individual components can still be distinguished. This differs from HAADF-STEM
imaging, where overlap between neighboring components cannot be neglected even at higher
incident electron dose (Figure 5(¢)) and becomes more pronounced with increasing integrated
intensity, i.e. with increasing number of atoms in the column. Reducing the incident electron
dose worsens the situation, as illustrated by the significant overlap in Figure 5(d). In this case,

it is no longer possible to visually distinguish individual components in the histogram.

The qualitative observation of less overlap between neighboring components implies atom
counting will be more precise when using COMx and COMy images as compared to HAADF
STEM. This reduced overlap can be quantified by the relative width, which is the ratio between
the standard deviation of each component (o) and the increment between consecutive
components (&). The relative width as a function of thickness for both imaging modes is shown
in Figure 5(e, f). At both dose levels, the relative width of COMx and COMy imaging is on
average almost three times lower than that of HAADF STEM images, highlighting the benefit
of using COMx and COMy images to attain more precise atom counting. Moreover, the relative
width for HAADF STEM imaging scales significantly with thickness, reflecting the more
significant overlap between components with increasing integrated intensity as observed in
Figure 5(c, d). This will result in less precise atom counts for higher thicknesses in HAADF
STEM. In contrast, the relative width for COMx and COMy images is less sensitive to thickness
since the overlap between neighboring components is more constant. This ensures constant
precision in atom counting regardless of increasing thickness. This can be understood as follows.

In HAADF STEM, the integrated intensity of an atomic column is proportional to the total

15



number of electrons scatted to the high-angle detector by the column. With increasing thickness,
more electrons are scattered to the detector and so the standard deviation of the integrated
intensity increases since the electron counting process is governed by Poisson statistics (see
Eq(6)). Meanwhile, the increment of the integrated intensity between columns having n and
n + 1 atoms remains constant since each atom contributes in an approximately equal and
independent way. Consequently, the relative width scales as a function of thickness. In COMx
and COMy imaging, the increment of the integrated potential between columns is again
approximately constant since the integrated potential is proportional to the projected potential
of the atomic column which scales linearly with the number of atoms in the column. However,
in contrast to HAADF STEM, the standard deviation of the integrated potential is now also
approximately constant since the total number of electrons used to form the COMx and COMy
images is essentially the same at all thicknesses. Thus, the relative width is approximately

constant.

Atom counting for a wedge-shaped sample

By using bulk crystals, our model-based approach for COMx(y) images has been shown to
successfully isolate contribution from individual atomic columns, forming a basis for column-
by-column atom counting. However, this is insufficient to demonstrate the applicability of this
approach for samples where adjacent columns have different number of atoms. In this section,
we show the capability of counting atoms from COMx and COMy images for a more realistic
wedge-shaped sample, which is considered as a prototype for catalyst nanoparticles. The
MULTEM software has been used to simulate the 4D dataset for an aluminum wedge with a
thickness ranging from 5 to 20 atoms. The microscope parameters for this simulation are the

same as those listed in Table 1 (see Table S1 for more simulation details).
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Figure 6. (a, b) Synthesized COMx and COMy images of the aluminum wedge, and (¢, d) corresponding parametric
Lorentzian-based model. (e) Line profile for the synthesized COMx image and the Lorentzian model averaged along
the vertical direction. (f) Line profile for synthesized COMy image and the Lorentzian model averaged along the

horizontal direction. (g, h) Difference between COMx(y) image and corresponding Lorentzian model.
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Figure 6(a, b) shows the COMx and COMy images simulated for this structure and Figure 6(c,
d) shows the parametric models, given by Eq(3) evaluated at the parameters estimated
following Eq(5). Visual inspection reveals no significant difference between the models and the
synthesized images. Contrast features are successfully reproduced by the model, with stronger
signals for atomic columns containing more atoms. The excellent fit is demonstrated further in
Figure 6(e, f), where the pixel values of the images and models are compared after averaging
along the vertical direction for COMx and along the horizontal direction for COMy. A full
difference map between the synthesized image and the corresponding model is also shown in
Figure 6(g, h), evidencing an accurate quantification of the COMx and COMy image. The
estimated integrated potentials of the atomic columns are then grouped according to the number
of atoms in each column. Figure 7 compares the averaged integrated potential of each group to
the values estimated from the aluminum bulk crystal at the corresponding thickness, showing
good agreement. This consistency demonstrates the successful isolation of individual atomic
column contributions in the wedge-shaped sample and highlights the robustness of using COMx
and COMy images for atom counting, where bulk crystal simulations can serve as a reference
library. Consequently, atom counting for samples with different shapes can be achieved by

comparing to these library values.
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Figure 7. Integrated potential comparison between the aluminum wedge and the aluminum bulk crystal.

Discussion

So far, we have successfully developed a model-based approach to quantify COMx and COMy
images synthesized from simulated 4D STEM datasets. This allows for a more precise atom
counting as compared to the traditional HAADF STEM imaging. For the suggested parametric
model, the projected potential convolved with the probe intensity is approximated by a
superposition of 2D Lorentzians (Eq2), with localized peaks at each atomic column. Unknown
quantities, such as the height, width and volumes of these peaks, are then determined by
simultaneously fitting the COMx(y) images as a superposition of x(y)- derivatives of 2D
Lorentzians. This differs from the previous use of a 2D Gaussian to approximate the projected
potential [45] and HAADF STEM images [47,50,54-56]. In this section we therefore compare

the use of a superposition of x(y)- derivatives of 2D Lorentzians with that of a superposition of
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x(y)- derivatives of 2D Gaussians to show that the former is better for parameterizing the

COMx(y) images.

Taking COMx as an example, the parametric model describing the expectations of the image

intensities at pixel (k, 1) using x(y)- derivatives of 2D Gaussians is given by:

] Eq(7)

M , ,
fr(0) = Z —2 7y (xRZpZixm) exp (et 'me)ngn = Byw)

where 1, Pm, Bx,, and B, are the height, width, x- and y-coordinates of the 2D Gaussian
associated with the mth atomic column. To compare the quality of Lorentzian- and Gaussian-
based models, the synthesized COMx and COMy images of the aluminum wedge were

parameterized following Eq(7) and the results are shown in Figure 8.
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Figure 8. (a, b) Synthesized COMx and COMy images of the aluminum wedge, and (¢, d) corresponding parametric
Gaussian-based model. (e) Line profile for the synthesized COMx image and the Gaussian model averaged along the
vertical direction. (f) Line profile for synthesized COMy image and the Gaussian model averaged along the horizontal

direction. (g, h) Difference between COMx(y) image and corresponding Gaussian model.
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Qualitatively, a Gaussian-based model can still capture the contrast features of the synthesized
images. However, the level of quantification is not as accurate as when a Lorentzian-based
model is used, which is evidenced by the larger deviations between the synthesized image and
the model, as illustrated in Figure 8(e-h) (see Figure 6(e-h) for a comparison). To further
compare the quality of the fit in a quantitative manner, the sum of squared residuals (SSR) is

calculated for both models:

SSR = Y (wi™ O = 20 @)y Eq(8)

where chlozwx(y ) is the value of pixel (k, 1) in COMx(y) image and kalOMx(y )(é) is the
corresponding pixel value given by the Lorentzian- or the Gaussian- based parametric model.
The results are listed in Table 2. Consistent with the qualitative observation, a Lorentzian-based
model provides a significantly more accurate quantification of the COMx and COMy images,

as indicated by its nearly five times lower SSR value.

Table 2 SSR of Lorentzian- and Gaussian- based parametric model for COMx(y) image

Parametric model COMx COMy
Lorentzian-based 0.40 0.41
Gaussian-based 1.89 2.30

The superior quality of the Lorentzian-based model is likely related to its more accurate
description of the projected potential of atomic columns convolved with the probe intensity. To
validate this claim, the projected potential of a 10-atom-thick aluminum column was simulated

and convolved with the probe intensity:

0(r) = P(r) *psf(r) Eq(9)

where P(r) is the projected potential and psf(r) is the probe intensity. Figure 9 shows the
results of fitting both Lorentzian (Eq(2)) and Gaussian models (see section 2 in supporting info

for more details) to O(r). Clearly, the Lorentzian model leads to a more accurate
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parameterization, which is consistent with the better performance of Lorentzian-based model
for COMx and COMy images of the aluminum wedge. That this parameterization works well
for the potential convolved with the probe intensity eliminates the additional complexity of
explicitly including the probe intensity in the model, reducing the computational cost of the

fitting process.

C)

o(r) o)
Lorentzian model Gaussian model

Figure 9. (a) Projected potential of 10-atoms-thick aluminum column convolved with the probe intensity. (b) Best fit
Lorentzian and (c) Gaussian models illustrated in the same color scale, together with line profiles across the middle of
the image.

Conclusions

In this study, a model-based quantification approach has been developed for first-moment
STEM images. By simultaneously fitting COMx(y) images as a superposition of x(y)-
derivatives of a 2D Lorentzian peak, contributions from individual atomic columns are
successfully isolated, which forms a basis for column-by-column atom counting. Unknown
structural parameters, particularly the integrated potential of atomic columns, are estimated
accurately and precisely. The monotonic increase of the integrated potential as a function of
thickness enables the use of this quantitative measure for atom counting. Comparison of the
widths of the histograms of integrated potential (for COMx and COMy) and intensity (for
HAADF) across many different noise realizations reveals that atom counting is more precise
from COMx and COMy images than from HAADF images. Finally, the robustness of this

quantification approach to perform atom counting for samples with different shapes is

23



illustrated. This is achieved by matching integrated potentials from the target sample to library

values from bulk crystals.
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Section 1: Additional simulation details

Table S1 Parameters for simulating 4D datasets of the aluminum wedge

Parameter Value
Acceleration voltage 300kV
Defocus Half of overall thickness
Spherical aberration 0 mm
Semi-convergence angle 20 mrad
Spatial incoherence of source 05A
Probe step size 0.2025 A
Number of probe position 170x211
Pixel size in reciprocal space 0.0235 Al
Number of pixels in reciprocal space 800x800
Maximum sampling angle in reciprocal space 185.2 mrad
Root mean square displacement Al atom 0.085 A

Number of phonon configurations 30




Table S2 Parameters for simulating HAADF images of the aluminum crystal thickness series

Parameter Value
Acceleration voltage 300 kV
Spherical aberration 0 mm
Semi-convergence angle 20 mrad
Spatial incoherence of source 0.5A
Number of unit cells per supercell TXT
Probe step size 0.2025 A
Number of probe position per unitcell 20%20
Pixel size in reciprocal space 0.0353 A-!
Number of pixels in reciprocal space 600x600
Maximum sampling angle in reciprocal space 208.3 mrad
HAADEF inner collection angle 56 mrad
HAADF outer collection angle 190 mrad
Root mean square displacement Al atom 0.085 A
Number of phonon configurations 30

Section 2: Impact of defocus on the integrated potential

To gain more insight into the robustness of performing atom counting based on the integrated
potential, we simulated 4D datasets of bulk aluminum as a function of thickness, where the
defocus of the incoming electron probe is set at the top surface of the crystal. All other
simulation parameters remained identical to those listed in Tablel. The COMx(y) images are
then calculated from these datasets, followed by the previously discussed parameter estimation
procedure. The comparison of the integrated potential for the central atomic column is shown

below.
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Figure S1 (a) Comparison of integrated potential as a function of thickness between probe defocus at the midplane and
at the top surface. (b) Central part of COMx image for an aluminum crystal of 40 atoms thick with the probe focusing

at the top surface. (c) Corresponding parametric model of (b).

In Fig. S1(a), setting the probe defocus at the top surface reduces the range over which the
integrated potential is linear with the sample thickness relative to setting the probe defocus at
the midplane, even though the Lorentzian derivative model remains a good fit to the COM
images up to the highest thickness examined here (as illustrated in panel b and c). This is
consistent with the phase object approximation being most accurate when the defocus is near
the midplane of the sample and conversely breaking down for lower thicknesses when the
defocus is not in the midplane [1,2,3]. Nevertheless, the integrated potential values from the
two defocus conditions are comparable up to a thickness of approximately 10 atoms, suggesting
a defocus tolerance of about +£20A from the “optimal” focus (midplane) if simulations assuming

defocus to the midplane are used as the reference for converting integrated potential to number



of atoms. If rather than using simulation as the reference we instead performed atom counting
via the statistical method introduced in [4], the tolerance would be increased since then we
would only require a monotonically increasing integrated potential with thickness, which as per
Fig. S1(a) holds to a thickness of ~20 atoms, i.e. a ~40A change in defocus from the midplane

might be tolerable.

To further clarify this point, we also simulated 4D datasets for a wedge with the same shape as
illustrated in Figure 1 of the main text. To reduce the computational cost, only a single row of
atomic columns is used. The integrated potentials from three defocus conditions — specifically,
for the probe focused at the top surface, the midplane, and the bottom surface — are compared

in Figure S2.
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Figure S2 Left: side view of the wedge showing different defocus conditions; Right: comparison of integrated potential

with defocus set at the top, middle and bottom surface of the aluminum wedge.

Although the absolute value of the integrated potential changes slightly as the defocus shifts
from the surface to the bottom of the wedge (~75 A total thickness), the monotonically
increasing response with respect to thickness is preserved, making it feasible to perform atom

counting using the statistical method introduced in [4]. Overall, while the first-moment image



tends to be more sensitive than HAADF images to defocus, this sensitivity does not

significantly hinder its application to atom counting.

Section 3: Details for simulating and quantifying projected potential of
a single aluminum column

Projected potential P(r) of a 10-atoms-thick aluminum column was simulated using MULTEM

software. The probe intensity psf (r) is generated as follows:

psf(r) = |p(r)|?

where the function p(r) is given by the inverse Fourier transform of the objective lens transfer

function 7(g):

p(r) = F~1(T(9))

T(g) is given by:

T(g9) = A(g)exp(ix(9))

where A(g) is the aperture function and the phase shift y(g) is related to a set of microscope
parameters including the acceleration voltage, the semi-convergence angle, defocus and
spherical aberration of the third and fifth order. The microscope parameters used to generate

x(g) are listed in Table S3.



Table S3 Parameters to generate phase shift y(g)

Parameter Value
Acceleration voltage 300 kV
Defocus Half of column thickness
Spherical aberration 0 mm
Spherical aberration of 5™ order 0 mm
Semi-convergence angle 20 mrad

The probe intensity psf () is then convolved with the projected potential P(r):
0(r) = P(r) *psf(r)
followed by fitting O () with 2D Lorentzian or 2D Gaussian peaks written as:

FTenE e (9) = n(? + G — B+ (= By)) 2

(xk - .Bx)z - (yl - By)z
2p? ]

kaiaussian (9) = nexp [_

with fy; the pixel intensity at pixel (k, 1) in the model and 6 = (By, By, 7, p)T the vector of

unknown parameters, where p, B, and f,, are the width, and x- and y- coordinates of the peak.

The height of the peak is % for the 2D Lorentzian and 7 for the 2D Gaussian. Use has been

made of the uniformly weighted least squares criterion, which evaluates the correspondence

between O(r) and the model. The estimates 8 are given by the values of ¢ that minimize the

uniformly weighted least square criterion:

~

K

R . . 2

0 = arg mtm E [(ORL _ fkliorentZLan(Gaussmn) (t)) ]
k=11=1

where Oy, represent the observed values in O(7) at pixel (k, ).
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