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Abstract In this paper convexity constraints are derived for a background model of electron energy
loss spectra (EELS) that is linear in the fitting parameters. The model outperforms a power-law both on
experimental and simulated backgrounds, especially for wide energy ranges, and thus improves elemental
quantification results. Owing to the model’s linearity, the constraints can be imposed through fitting by
quadratic programming. This has important advantages over conventional nonlinear power-law fitting
such as high speed and a guaranteed unique solution without need for initial parameters. As such, the
need for user input is significantly reduced, which is essential for unsupervised treatment of large data
sets. This is demonstrated on a demanding spectrum image of a semiconductor device sample with a
high number of elements over a wide energy range.

Keywords Electron energy-loss spectroscopy; linear background model; quadratic programming; con-
vexity constraints; constrained optimization; power-law.

1 Introduction

The rising importance of spectral imaging places
strong demands on the underlying data process-
ing tools. To satisfy the need to quickly process
large numbers of spectra, and because the amount
of data far surpasses the ability of a human opera-
tor to carefully vet or fine-tune individual spectrum
results, fast and robust methods are needed.
In electron energy loss spectroscopy (EELS), el-

emental abundances are determined by counting
the number of electrons which have undergone an
element-specific inelastic interaction. For example,
oxygen abundance is determined by measuring the
number of electrons which have inelastically scat-
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tered with the K-shell electrons. One of the most
critical steps in obtaining this number of electrons
is to remove the background signal. A standard
method is fitting a power-law, AE−r, to an en-
ergy window before the onset energy of the core-
loss edge of interest. This method has several dis-
advantages: there is a user bias by defining the fit-
ting window; a large enough pre-edge region needs
to be available, which is often not the case when
core-loss edges are nearby in energy; the power-law
is non-linear, hence the numerical optimization can
get stuck in local minima, and proper starting pa-
rameters are necessary; finally, the statistical noise
is amplified due to the extrapolation underneath
the core-loss edge [1].

Multiple methodologies have been developed to
circumvent one or multiple of these issues. For in-
stance, the extrapolation problem is solved by in-
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terpolation of the background if the edge extends
to high enough energy losses [2, 3]; the non-linear
aspect of the background fitting and extrapolation
is removed by using a linear background function,
which is a sum of fixed power-laws[4].
Another methodology is the model-based ap-

proach [5, 6, 7], where the background and the
core-loss edges are fitted to a single model which
describes the physical parameters of an experimen-
tal EEL spectrum. Hence the model both includes
the background and the edges, removing the ex-
trapolation problem and the user bias since no en-
ergy windows for pre-edge fitting needs to be de-
termined. Moreover, this approach also helps in
the separation of overlapping core-loss edges[5] and
takes the multiple scattering into account if the
zero-loss peak is available.
In this work, we concentrate on the background

signal of core-loss spectra. This consists of the
contributions of many energy-loss processes that
happen at onset energies below the energy offset
of the spectra, such as plasmons or other core-loss
edges; these have high energy tails which approxi-
mate power-laws [8, 1].
In practice the exponent of these processes is not

well known and their shape will be further modi-
fied by multiple scattering. However, despite these
confounding factors, one can expect monotonically
decreasing and convex behavior due to the power-
law shape of the individual contributions; this holds
even in the presence of multiple scattering, since
the convolution with the low-loss spectrum that
models it preserves monotonic decrease and con-
vexity.
If one of the contributions to the measurements

happens at energies below the spectrum onset, but
at high-enough energy to not yet behave in a de-
creasing, convex fashion—think, for example, of the
fine structure of a core-loss edge whose onset lies
just a few tens of eV below the spectrum offset—it
cannot be considered a background signal within
the framework of this paper, but would need to be
modeled separately.
This paper investigates a background model that

is linear in the fitting parameters, implements it
in the model-based approach, and formulates con-
straints that ensure the background’s convexity,
monotonic decrease and non-negativity.
The associated constrained least squares prob-

lem is completely linear and can hence be solved

fast with quadratic programming (QP) optimiza-
tion. Owing to the convexity of the error metric,
its single solution is obtained without the need for
a starting guess.
The conventional background model in EELS is

a power-law [9], the exponent of which needs fitting
as well. It is this single parameter that turns the
optimization problem non-linear. In this paper, we
consider the linear background model,

bg(E) =

n∑

i=1

aiE
−ri , (1)

with E the energy-loss, ais the fitting parameters
and ris fixed exponents set by the user. A simi-
lar model has been treated in [4]. Fitting the pro-
posed model as-is, can lead to non-physical back-
grounds that exhibit so-called ‘shoulders’, are lo-
cally increasing, or even negative.
In this paper we show that these artifacts are

overcome by imposing the aforementioned con-
straints on the solution with QP, and that the
constraints can be formulated as a relatively small
number of expressions that are linear in the the
fitting parameters. When applied to experimen-
tal spectra, it was observed that the model in (1)
describes the actual background better, i.e. with
lower chi-squared adjusted for degrees of freedom,
and that it enables fits over larger energy regions
than the conventional power-law model.
The paper is laid out as follows. In Sec. 2 the

methods are described, with particular attention to
quadratic programming in Sec. 2.1; the formulation
of the constraints in Secs. 2.2 and 2.3; and the
validation of the linear background model in Sec.
2.4. Experimental results are shown in Sec. 3, and
Secs. 4 and 5 contain the discussion of the results
and the conclusions.

2 Methods

2.1 Quadratic programming

In quadratic programming (QP), a problem of the
form

argmin
x

1

2
xTPx+ qTx, (2)

subjected to Gx ≤ h, (3)

Ax = b, (4)
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is solved for x. If the problem is convex, i.e. P
is positive semidefinite, it is sometimes not much
more difficult to solve than a linear program [10].
A least squares problem can be converted into a

QP, as

argmin
x

1

2
||Rx− s||2W , (5)

is equivalent to,

P = RTWR, q = −RTWs. (6)

Here, W is a symmetric weight matrix (usually di-
agonal) and s is the vector of observations. In our
case, the vector of unknowns contains the param-
eters a of the background model in (1), and the
amplitudes of the ionization edges.
The QP is solved with the Quadprog Python

package [11], which is based on the paper in [12].

2.2 Convexity constraints

A function is convex if the line connecting any two
points that lie above its graph, lies above the graph
between the two points. The twice differentiable
functions that are the subject of this paper, are
convex if and only if their second derivatives are
non-negative on the energy interval under consid-
eration. The convexity constraint is needed, be-
cause without it, the monotonic decrease and non-
negativity constraints still allow for shoulders in the
background fit.
Demanding convexity amounts to imposing a

positive second order derivative with respect to the
energy E,

∑

i

aisiE
∆ri ≥ 0 ∀E ∈ [Eb, Ee], (7)

with Eb and Ee the first and last value in the
energy-axis,hence Eb < Ee, and si = ri(ri +1) and
∆ri = r1 − ri were defined to make the notation
lighter. Without loss of generality, the exponents
ri are sorted in ascending order.

In this formulation, as many constraints as en-
ergy bins are given. To be of more practical use,
this number must be reduced.

2.2.1 Necessary conditions

It is fairly straightforward to formulate necessary
conditions by evaluating (7) in only a few energy

Figure 1: Illustration of the role of the tangents in
the convexity constraints in (9).

values Ej ,

∑

i

aisiE
∆ri
j ≥ 0. (8)

The set of energies Ej are chosen by the user. In
practice only a few energies seem to suffice: three
to five are often enough.
In order to accommodate the much larger slope

at lower energies, we chose to space the Ejs such
that each is the harmonic mean of its two nearest
neighbors at lower and at higher energy, and to set
the lowest Ej equal to Eb and the highest to Ee. It
has to be noted however, that these conditions do
not guarantee convexity.

2.2.2 Sufficient conditions

In this Section, (7) is condensed in a lower number
of constraints, while still guaranteeing convexity.
Consider the parameters (a1, . . . , an)

T , and move
the negative terms to the right:

∑

i∈P

aisiE
∆ri ≥ −

∑

j∈N

ajsjE
∆rj . (9)

with P = {k|ak ≥ 0}, the set of indices of the non-
negative parameters, and N = {k|ak < 0} that of
the negative parameters.
Both sides of this expression are positive, mono-

tonically decreasing, and convex, thus ensuring
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that (9) holds for all energies if (i) the right-hand
side is below the left-hand side in Eb and Ee, and
(ii) if in Ec the right-hand side is lower than the
left-hand side’s tangent through Ee; where Ec is
defined as the crossover of the left-hand side’s tan-
gents through Eb and Ee. A proof of this lemma
is provided in Appendix A. Expressed mathemati-
cally, we get,

∑

i∈P

aisiE
∆ri
b ≥ −

∑

j∈N

ajsjE
∆rj
b , (10)

∑

i∈P

aisiE
∆ri
e ≥ −

∑

j∈N

ajsjE
∆rj
e , (11)

∑

i∈P

aisiE
∆ri
e (1 + (Ec/Ee − 1)∆ri)

≥ −
∑

j∈N

ajsjE
∆rj
c .

(12)

This is illustrated in Figure 1.
So far this exercise was performed for one partic-

ular realization of positive and negative parameters
ai. However, all possible combinations need to be
analyzed, and those constraints that are equivalent
must be identified and eliminated. This yields the
system of linear constraints,

∑

i

aisiE
∆ri
b ≥ 0, (13)

∑

i

aisiE
∆ri
e ≥ 0, (14)

∑

i∈Ck

aisiE
∆ri
e (1 + (Ec/Ee − 1)∆ri)

+ a1s1 +
∑

i/∈Ck

aisiE
∆ri
c ≥ 0, ∀Ck.

(15)

The set Ck is a combination of k elements from
the set {2, 3, . . . , n}, and the sums are over all k-
combinations for all k ranging from 1 to n−2. The
number of constraints then equals 2n−1.

Fortunately, Ec can be well-approximated inde-
pendently of the fitting parameters aj . For a single
term aisiE

∆ri in (9), the crossover of the tangents
is given as

Ec,i =
∆ri − 1

∆ri

E∆ri
b − E∆ri

e

E∆ri−1

b − E∆ri−1
e

. (16)

Lowest values are reached for largest |∆ri|, and can
be used as a safe lower bound. Furthermore, for

typical values of ∆ri, Eb and Ee (−4, 200 eV and
1000 eV, respectively), Ec varies relatively little as
a function of ∆ri. This can be understood by con-
sidering the limit for large Ee:

∆ri − 1

∆ri
Eb. (17)

In Appendix B looser sufficient conditions are
shown; although they guarantee convexity, they ex-
clude a larger number of valid solutions.

2.2.3 Non-negative coefficients

Another way of ensuring convexity is through the
constraints

aj ≥ 0, ∀j. (18)

These conditions are also sufficient, although they
exclude notably more acceptable solutions than the
constraints in Section 2.2.2.

2.3 Further constraints

The constraints in Sections 2.2.1 and 2.2.2 only im-
pose convexity. By adding the constraint

∑

i

airiE
∆ri
e ≤ 0, (19)

the solution becomes monotonically decreasing,
and by adding

∑

i

aiE
∆ri
e ≥ 0, (20)

it is guaranteed to be positive or zero.
Note that the non-negativity constraint from

Section 2.2.3 does not need these extra condi-
tions to guarantee monotonic decrease and non-
negativity of the background.
Since physically the edge amplitudes cannot be-

come negative, these too have been constrained to
non-negative values with QP.

2.4 Validation of the linear model

To get a sense of scale for the value of the exponent
in the power-law model, it is fitted to a large num-
ber of experimentally obtained backgrounds. From
various spectra with varying noise content, energy
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∆E # ⟨r⟩ σr

150 1650 3.62 0.77
200 1650 3.48 0.76
300 940 3.29 0.80
500 518 3.04 0.95
700 390 3.11 0.90

1000 122 2.71 0.82
1500 32 1.18 0.03

Table 1: Average exponent ⟨r⟩ of power-laws fit-
ted to a series of experimental backgrounds over
various energy windows (∆E [eV]). The number of
spectra per energy range is indicated as #, and the
standard deviation on r as σr.

ranges of variable length were extracted that con-
tained no edges and only background. From these
ranges, as many non-overlapping sections as possi-
ble of lengths ranging from 150 eV to 1500 eV were
selected for further evaluation.

In [13], it is discussed that the various contribu-
tions to the background to inner-shell edges have
an approximate power-law behavior with the expo-
nent usually close to −3. Indeed, fitting a power-
law to the experimental background regions shows
that the exponent has a mean value of 2.7 ± 0.9;
see Table 1. This immediately suggests reasonable
values and range for the exponents ri in the linear
model.

2.4.1 Simulated backgrounds

To test the different models, simulated (and hence
noise free) backgrounds were created from the
[400, 1900] eV energy interval of a simulated pure
carbon sample. The simulated spectrum consists
of a zero-loss peak that is approximated as a Voigt
function [14] with a full width at half maximum
of 2 eV, a plasmon peak corresponding to a sam-
ple thickness of 50 nm (inelastic cross section from
[9]), and hydrogenic K- and L-edges with onsets
at 283 eV and 11 eV [15], respectively; see Figure
2. The L-edge is used to mimic the single electron
excitation[16].

The dispersion was chosen at 1 eV, and the spec-
trum was convolved with itself to account for mul-
tiple scattering. Fine structure was not considered
since the energy loss far from the edge onsets, which
is the background area of interest here, are consid-

Figure 2: The individual components that, after
addition and self-convolution, yield the simulated
background spectrum.

ered to be described very well by the free atom
approximation.
From this 1500 eV-wide energy range, as many

non-overlapping sections as possible of lengths
given in the first column of Table 2 were selected
for fitting with a five-term linear background, with
non-negative coefficients, sufficient and necessary
constraints. The exponents are given as,

r1, . . . , r5 = 1, 2, 3, 4, 5. (21)

The fit quality is assessed through the average
relative error defined as,

⟨σrel⟩ =
1

N

N∑

i

|fi − gi|

gi
. (22)

With N is the number of energy bins, and f and g
are the fitted and simulated backgrounds, respec-
tively.
The results are presented in Table 2 and Figures

3 and 4. Over all background lengths, the linear
models for all constraints perform notably better
than the power-law, and for energy ranges of 500 eV
and above, the relative errors of the sufficient and
necessary constraints were equal or comparable.
For the 1500 eV-wide background, the maximum
relative error over this energy range is 15% for the
power-law, while for the linear backgrounds it is
0.6%, 0.2% and 0.1% for the non-negative coeffi-
cients, sufficient and necessary constraints, respec-
tively.
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∆E # pwr n-n suff nec
150 10 0.05 1.7e-3 1.9e-4 1.5e-4
200 7 0.09 2.2e-3 4.8e-4 2.9e-4
300 5 0.19 4.8e-3 1.4e-3 1.1e-3
500 3 0.56 1.5e-2 1.9e-3 1.9e-3
700 2 1.22 2.7e-2 2.0e-3 2.0e-3
1000 1 3.55 5.1e-2 5.5e-3 5.5e-3
1500 1 5.66 1.4e-1 3.2e-2 2.2e-2
1500 1 14.92 5.8e-1 1.7e-1 1.1e-1

Table 2: 100×⟨σrel⟩ [%] of a power-law (pwr), and
a five-term linear model with non-negative coeffi-
cients (n-n), sufficient (suff), and necessary (nec)
constraints, fitted to the simulated backgrounds.
The last row lists the maximum relative error over
the interval. The number of spectra per energy
range is indicated as #.

Figure 3: Fit of the power-law to a 1500 eV wide
simulated background. The other fits are not dis-
played because they are indistinguishable from the
data at the plot’s display resolution; see Figure 4
for the relative errors.

Figure 4: Relative errors of fits to the simulated
background as a function of energy-loss for the
power-law and a five-term linear model with non-
negative coefficients (n-n), sufficient (suff), and
necessary (nec) constraints.

These errors can be put in perspective when as-
suming counting statistics is the only source of
noise. In that case, the deviation from an incor-
rect model becomes dominant at a total number of
counts in the spectrum equal to,

1/⟨σrel⟩
2. (23)

Per Table 2, for ∆E = 1500 eV, this amounts to
only 242 electrons for the power-law, but 5.0e+7
for the linear background with sufficient conditions.
This demonstrates that for most practical uses, the
power law performs largely insufficiently and will
lead to significant deviations and bias from the sta-
tistical optimum.
It can be argued that this conclusion depends on

the trust we put in how well our simulated back-
ground describes reality. If we took the position
that, contrary to experimental evidence [13], a sin-
gle power-law is considered as the true model for
the background, we can still test how the linear
background model with sufficient constraints per-
forms when fitted to this power-law over a 1500 eV
wide energy range. When the exponent of the
power-law is chosen as −3.5, we find that a rela-
tive error of 1.8e-2% is obtained showing that, if
the power-law were the true model (quod non), it
would take at least 3.1e+7 electrons in an experi-
mental spectrum to statistically prefer it over the
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∆E pwr suff/3 suff/4 suff/5
150 0.99 0.98 0.98 0.98
200 1.05 1.02 1.02 1.02
300 1.02 1.01 1.01 1.01
500 1.06 1.00 1.00 1.00
700 1.15 1.01 1.00 1.00
1000 1.39 1.02 1.00 1.00
1500 2.60 1.02 1.01 1.01

Table 3: Average ⟨χ2⟩ of power-law (pwr), and
linear model with sufficient conditions and three
(suff/3), four (suff/4) and five (suff/5) terms fitted
to experimental backgrounds. See Table 1 for the
number of spectra per energy range.

more generic linear model.

2.4.2 Experimental backgrounds

In order to compare the fit quality of the power-
law and the linear background model to the exper-
imental backgrounds, the normalized chi-squared,
corrected for degrees of freedom [17],

⟨χ2⟩ =
1

dof

N∑

i=1

(fi − gi)
2

fi
, (24)

is used. The variables are defined like in (22),
and dof is the number of degrees of freedom which
equals the number of energy bins minus the num-
ber of fitted parameters, thus ensuring that the ex-
pected value is 1.
Only sufficient constraints have been investi-

gated, as on the simulated backgrounds they
yielded relative errors similar to the necessary con-
straints, but with the added advantage of guaran-
teeing convexity. Besides the five-term background
with exponents listed in (21), also four- and three-
term backgrounds with exponents

r1, . . . , r4 = 1, 2.33, 3.67, 5, (25)

r1, r2, r3 = 1, 3, 5, (26)

respectively, were investigated.
The results are listed in Table 3. The linear back-

ground models are a significant improvement over
the power-law model, especially for larger energy
regions. In Figure 5 an example is shown for a
1500 eV energy range. The poor performance of
the power-law model, especially over large energy
ranges, is expected from previous work [18, 19].

Figure 5: Fit of the power-law, and the four-
term linear background model with sufficient con-
straints.

3 Experimental results

In order to test the performance of the background
model in a realistic spectrum imaging situation we
selected a semiconductor sample from a recent ad-
vanced device containing N, Ti, O, and Cu. We ac-
quired spectral data with an EEL spectrometer, at-
tached to a Thermo Fisher Themis Z. The acceler-
ation voltage was 300 kV, the convergence and col-
lection semi-angles were 28 mrad and 40 mrad, re-
spectively. The energy axis ranged from 280.384 eV
to 1119.193 eV, with a 0.423 eV dispersion. The
spectrum image (SI) sampling is 128 by 128 pixels,
with a 4.39 nm probe step size.

The edges that were investigated are the C K-
edge, N K-edge, Ti L23-edge, O K-edge, and Cu
L23-edge, with nominal onsets at 284 eV, 402 eV,
456 eV, 532 eV, and 931 eV, respectively.

The spectra in the SI are fitted over the whole
energy range with the exception of the interval
[460, 475] eV, which was excluded because of the
prominent Ti white lines that reside there. The
edge models are the hydrogenic K- and L-edges as
described in [9]. Two background models are com-
pared: the power-law model, and the five-term lin-
ear model from (21). The low-loss spectra have
been recorded as well and are convolved over the
models to account for multiple scattering.

A five-term linear background model has been
fitted with QP to impose sufficient constraints for
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convexity, monotonic decrease and non-negativity
on the background, and non-negativity on the am-
plitudes of the edges. Furthermore, the power-law
model has been fitted with TRF [20], a trust-region
reflective method in SciPy that was used to impose
non-negativity on the edge amplitudes.

In Figure 6 elemental maps for N, Ti, O and Cu
are displayed. Since each fit is performed on an in-
dividual spectrum that is relatively noisy (average
80 counts/energy bin), the quality of the individual
fits is not immediately apparent. Hence, we present
averages over selected spatial regions, indicated by
red squares in the elemental maps, to better as-
sess the results and to show the effect of bias when
summing multiple fits.

In Region 1, in the upper part of the maps,
the power-law overestimates the background, re-
sulting in an underestimation of the copper con-
tent. The linear background model remains much
closer to the average experimental spectrum, ex-
cept in the fine structure region where we know the
atomic cross section model is insufficient. In Re-
gion 2, the oxygen edge is not detected with the
power-law background, thus missing the slight oxi-
dation that the linear background reveals. The ni-
trogen content in Region 3 appears overestimated
for the power-law model specifically by underesti-
mating the pre-edge region showing bias introduced
by an incorrect model. Finally, a systematical over-
estimation (bias) of the background by the power-
law model in the silicon substrate region is demon-
strated in Region 4. As we don’t know the true
quantification for an unknown experimental sam-
ple, it is hard to quantify this bias effect, the ex-
ample however clearly shows a far lower bias when
using the constrained model as compared to the
commonly used power law.

To provide an impression of the noise content
of the individual spectra, and the challenges this
poses on the fitting algorithms, in Figure 7, a single
spectra from the center of each of the four regions
in Figure 6 is displayed.

The computational speed of QP (linear con-
strained model) and TRF (nonlinear power law
fit) in our current implementation resulted in
3.6 ms/spectrum for the QP vs 66 ms/spectrum for
the TRF. This adds another significant advantage
to the linear model being 18 times faster.

4 Discussion

A sum of power-laws is an attractive choice of
model, since it lends itself to efficiently incorpo-
rate positivity, monotonic decrease and convexity
into the solution. As a result, this particular basis
(i.e. powers of 1/E) only needs 2n−1 +2 boundary
conditions to enforce the constraints.

Non-convex basis functions, such as polynomials
of E [21], might in principle be suitable as well.
However it is not clear how to ensure appropriate
solutions without applying constraints on each en-
ergy bin, which would deteriorate fitting speed and
performance. In fact, it is not clear if an attain-
able set of constraints could be formulated for such
basis functions.

The downward spikes in the relative errors de-
picted in Figure 4 coincide with crossings between
simulated background and fitted model. Their
number loosely correlates with the number of free
parameters in the model, since a higher number al-
lows for a better fit. Note that it is not a one-on-one
relationship: the fit with non-negative coefficients
constraints, for instance, exhibits one fewer zero
crossing.

Since solutions with sufficient constraints are a
subset of those with necessary constraints, the lat-
ter are expected to yield a better fit, as is indeed
borne out in Table 3. However, this comes at the
cost of not guaranteeing convexity. Furthermore,
this does not preclude the possibility of the rela-
tive error for sufficient constraint being lower for
specific energies, which can be observed in Figure
4.

Although the spectra in Section 3 were fitted over
the whole energy range, one could argue that by
fitting the Cu-edge separately from the other ele-
ments over a shorter range, the power-law would
have performed better than it did now. We main-
tain that the capability to treat large energy win-
dows is important nonetheless; for instance, con-
sider that all of the following edges, each of them
common in the semiconductor industry, fall in the
gap between the O K- and Cu L23-edge: Mn-L23

at 640 eV, Fe-L23 at 708 eV, Co-L23 at 779 eV,
La-M45 at 832 eV, and Ni-L23 at 855 eV. The pres-
ence of any of these would preclude splitting off the
Cu-region.
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Figure 6: Overview of a cross section of a semiconductor sample (HAADF), with four derived elemental
maps – Ti, O, N and Cu – estimated with a nonlinear power-law model (upper row) and the proposed
constrained linear (second row) background (suff/5). The average spectra over four spatial regions (lower
two rows) illustrates significant bias for the power law while this is not the case for the constrained linear
fit.
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Figure 7: Single spectra and their fits, from the centers of the regions depicted in Figure 6.
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5 Conclusion

A linear background model was proposed for EELS
experiments. To prevent artifacts where the fit-
ted background is non-convex, locally increasing
or negative, constraints have been formulated that
were imposed with the aid of quadratic program-
ming. The number of constraints equals 2n−1+2 at
maximum, with n the number of linear parameters.
The linear model described EELS backgrounds

better than the conventional power-law model; this
was corroborated by fitting to data sets of simu-
lated and experimental backgrounds and compar-
ing the relative error and the chi-squared to that of
the power-law model. Furthermore, energy win-
dows of up to 1500 eV wide were easy to treat
as a whole, thus alleviating the need to split up
the spectra, something that is not always possi-
ble when many different edges are present. This
is especially important for large datasets where re-
ducing the amount of user input is attractive and
opens opportunities for a fast and entirely unsu-
pervised quantification. We demonstrated this on
a semiconductor example dataset which showed a
strongly reduced bias resulting in a more reliable
quantification. This is of high importance to al-
leviate operator bias and reproducibility issues in
EELS while at the same time making EELS a far
more user friendly technique.

A Lemma sufficient convexity

constraint

Consider the convex functions f(x) and g(x) in Fig-
ure 8. We set out to proof that for g(x) to be lower
than or equal to f(x) for all x in [a, c], it is sufficient
that g(a) ≤ f(a), g(c) ≤ f(c), and g(b) ≤ ℓc(b);
where ℓa and ℓc are the tangents of f through a and
c, respectively, and b is the abscissa of the crossing
of ℓa and ℓc.
Due to f ’s convexity, the two line segments

through the point pair (a, ℓa(a)) and (b, ℓa(b)), and
the point pair (b, ℓc(b)) and (c, ℓc(c)) are lower than
or equal to f(x) for all x in the open interval (a, c).
It is hence sufficient to prove that g(x) is lower
than or equal to the two line segments if the above
conditions are fulfilled.
Consider the line segment ma through the points

(a, g(a)) and (b, g(b)). Due to g’s convexity, g(x) ≤

Figure 8: The convex function g(x) lies below the
convex function f(x) if g(a) ≤ f(a), g(c) ≤ f(c)
and g(b) ≤ ℓc(b).

ma(x) for all x in [a, b], and since it holds that
ma(a) ≤ ℓa(a) and ma(b) ≤ ℓa(b), it follows from
the line segments’ linearity that ma(x) ≤ ℓa(x),
and hence g(x) ≤ ℓa(x), for all x in [a, b]. The
same reasoning applies, mutatis mutandis, for the
interval [b, c].
Note how the proof is independent of explicit

expressions for f and g and holds for all posi-
tive, decreasing and convex basis functions, e.g.
exp (−E/s), with s a positive constant.

B Looser sufficient convexity

constraints

In this Section sufficient conditions for convexity
are shown that are looser than those in the main
body of the paper, this means although they guar-
antee convexity, they exclude more valid solutions.
Our starting point is once again (9).

B.1 Loosest conditions

Equation (9) holds for all energies if the right-hand
side evaluated in Eb is below the left-hand side eval-
uated in Ee. This is illustrated in Figure 9. This
leads to the set of constraints,

a1s1 +
∑

i∈Ck

aisiE
∆ri
b

+
∑

i/∈Ck

aisiE
∆ri
e ≥ 0, ∀Ck,

(B.1)
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Figure 9: Illustration of the convexity constraints
in (B.1).

Figure 10: Illustration of the convexity constraints
in (B.3).

with Ck defined like in Section 2.2.2.

B.2 Less loose conditions

Equation (9) holds for all energies if (i) the right-
hand side is below the left-hand side in Eb, and
(ii) the right-hand side evaluated in Eb is below
the left-hand side’s tangent through Ee evaluated
in Eb. This is illustrated in Figure 10. This leads
to the set of constraints,

∑

i

aisiE
∆ri
e ≥ 0, (B.2)

∑

i∈Ck

aisiE
∆ri
e (1 + (Eb/Ee − 1)∆ri)

+ a1s1 +
∑

i/∈Ck

aisiE
∆ri
b ≥ 0, ∀Ck,

(B.3)

with Ck defined like before.
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