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Abstract

In a published paper (Scripta Materialia, 2012, 66, 627–629), it is concluded that

the so-called Shuttleworth equation holds no implications for the relationship between

surface tension and surface energy. In this correspondence, we provide clarifications to

demonstrate that this conclusion is not valid.

In Ref. 1, Makkonen asserts that the so-called Shuttleworth equation ‘reduces to the defini-

tion of surface tension derived from mechanics’ and that ‘it does not provide an additional

law of surface physics.’ We respectfully disagree with Makkonen’s interpretation.



Shuttleworth (1949) demonstrated2 that ‘the surface tension of a crystal face is related to

the surface free energy by the relation

� = F + A(dF/dA) (1)

where A is the area of the surface’, � is the surface tension, and F is the specific surface free

energy, with F = H/A, H being the total Helmholtz free energy.

Since then, numerous claims both in support3–7 and criticism8–13 of this equation’s derivation

and its consistency with Hermann’s mathematical structure of thermodynamics have been

raised. We do not intend to stir these discussions further; rather, our aim is to challenge

Makkonen’s viewpoint as presented in Ref. 1.

Let us first clarify the terms surface tension and surface stress. In the literature, there are

cases where surface tension is defined as the reversible work required to create a surface

per unit area, similar to Gibbs’ introduction.5 Nevertheless, when Shuttleworth states ‘the

surface tension is the tangential stress,’ he is specifically referring to surface stress within

the surface layer in his equation and discussions.

Let us now explore Makkonen’s perspectives. Makkonen defines surface stress as the strain

derivative of the total free energy, i.e.

� =
@H

@A
(2)

This definition is certainly accurate but not aligned with Makkonen’s intended use. Ex-

panding the differential dH as AdF + FdA indeed yields Eq. (1). However, there are a few

considerations to note here. Makkonen claims that Eq. (2) is the definition of stress ‘in me-



chanics’, but this is not accurate. Rather, it is the definition of stress in the thermodynamics

of deformation.14 The definition of stress in mechanics is typically based on Cauchy’s stress

principles, representing the surface force per unit area (or line) that tends to return the

deformed mass to its mechanical equilibrium state. This understanding of stress predates

the introduction of free energy. When discussing surface stress, it is essential to consider the

excess stress (either positive or negative) in surface atoms compared to bulk atoms, necessary

to keep surface atoms in their positions as if they were in the bulk. While the interpretation

of excess properties dates back to the era of Gibbs, it extends beyond free energy and can

relate to any extensive thermodynamic property. Therefore, the definition of surface stress

is not contingent upon the interpretation of free energy. Shuttleworth effectively discusses

excess stress without directly referring to Gibbs’ formulation.

Shuttleworth interprets an infinitesimal elastic change in the surface of a solid in terms of

both mechanics and thermodynamics, which lead, respectively, to the left and right sides of

his equation. Makkonen, on the other hand, solely relies on thermodynamic evaluations and

asserts that the Shuttleworth equation is trivial. This approach oversimplifies the matter. To

draw a parallel in fluid dynamics, it is akin to defining the components of the velocity field for

an incompressible flow as derivatives of the stream function (u = @ /@y, v = −@ /@x) and

concluding that the law of continuity holds no additional implication and essentially reduces

to the definition of velocity (since it inherently satisfies itself when defined through the stream

function). It is also analogous to stating that the Young-Laplace equation, which estimates

the pressure difference over a curved interface, is essentially a result of static equilibrium and

basic geometry. We agree with Makkonen in acknowledging that the Shuttleworth equation

is not a ‘law of surface physics’ but rather an equation, as initially asserted by Shuttleworth

himself.

Additionally, Makkonen states, ‘the evaluation of surface stress should be based on its me-



chanical definition, as outlined by Gurtin and Murdoch15 and Wolfer.16’ Gurtin and Mur-

doch’s work does not directly reference free energy, and Wolfer defines surface stress as @F/@✏

(✏ being the strain, similar to the Gibbs formulation). Deriving Eq. (2) from @F/@✏ requires

keeping A constant, or essentially neglecting FdA in contrast to AdF . This essentially brings

Makkonen’s arguments back to Gutman’s objections to Shuttleworth,8 which have been thor-

oughly discussed by Kramer and Weissmüller.5 While thermodynamic properties need to be

interpreted in their unstrained state, this does not imply that, in an Eulerian derivation

where measurements are taken in a deformed state (similar to Shuttleworth’s approach), one

could neglect dA meanwhile the derivation.

To sum up, is Eq. (2), as used by Makkonen, incorrect? No, but referencing @F/@✏ introduces

unnecessary confusion regarding the proper definition of specific free energy.5 A simpler and

more appropriate formulation could be to simply relate the work required for infinitesimal

deformation to the differential of the extensive total free energy, similar to Shuttleworth’s

approach. It is still appropriate for Makkonen to use F = H/A (similar to Shuttleworth),

in contrast to several other works that use F = @H/@A,10,12,17 as with the latter definition

it is impossible to derive Eq. (1) from Eq. (2).

Now, what are the implications of the Shuttleworth equation? The Shuttleworth equation

is designed specifically for properly defined elastic strains and should not be interpreted

beyond its intended scope. For instance, Gutman’s arguments8 concerning the movement of

atoms from the bulk to the surface, as in the case of liquids, are not appropriate, because

Shuttleworth explicitly hedged ‘provided the deformation is reversible’.

Regarding liquids, although dF/dA is zero, which simplifies the Shuttleworth equation to

� = F (making it trivial for liquids), it should not be applied in this context. This is due

to the pressure gradient at the surface relative to the bulk, which introduces a source of



irreversibility. Even though the Shuttleworth equation coincidentally describes the end state

of this process correctly, its derivation is not suitable for liquids. It would have been better

if Shuttleworth had stated this explicitly.

Kramer and Weissmüller simply illustrate how the surface energy of solids may change

without causing surface stress.5 A broader discussion is available in Ref. 18, where it is

elaborated how solids may have more than one stress-free configuration. Therefore, one

excellent application of the Shuttleworth equation could be in wetting problems. In these

scenarios, the surrounding thermodynamic conditions, such as interfacial free energy, can

alter the stress distribution within the solid without changing its mechanical response.
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