

This item is the archived peer-reviewed author-version of:

Drought risk assessment : towards drought early warning system and sustainable environment in western Iran

Reference:

Sharafi Lida, Zarafshani Kiumars, Keshavarz Marzieh, Azadi Hossein, Van Passel Steven.- Drought risk assessment : towards drought early warning system and sustainable environment in western Iran Ecological indicators - ISSN 1470-160X - 114(2020), 106276 Full text (Publisher's DOI): https://doi.org/10.1016/J.ECOLIND.2020.106276 To cite this reference: https://hdl.handle.net/10067/1700710151162165141

uantwerpen.be

Institutional repository IRUA

1 Drought Risk Assessment: Towards Drought Early Warning System and

2 Sustainable Environment in Western Iran

- 3 Lida Sharafi¹, Kiumars Zarafshani^{1,*}, Marzieh Keshavarz², Hossein Azadi³, Steven Van Passel⁴
- 4 ¹Department of Agricultural Extension & Education, Razi University, Kermanshah, Iran
- 5 ² Department of Agriculture, Payame Noor University, Tehran, Iran
- 6 ³Department of Geography, Ghent University, Belgium
- 7 ⁴ Department of Engineering Management, University of Antwerp, Belgium
- 8 * Corresponding author: <u>zarafshani2000@yahoo.com</u>
- 9 Abstract

Prolonged drought is considered as a creeping natural hazard, which has created a financial 10 burden and unsustainable environment in Iran. Moreover, the effect of drought phenomenon in 11 12 rural areas is more extensive, causing significant challenges to the rural economy in general and agricultural production in particular. A common strategy to manage drought is based on 13 crisis management (ex-ante). However, for effective drought management, risk management 14 15 seems to be more in line with drought early warning systems. This quantitative study used risk assessment, which is the function of two elements such as hazard (SPI and SDI indices) and 16 vulnerability (exposure, sensitivity, and adaptive capacity). This study aims to build the 17 foundations for drought early warning systems in limited resource areas such as Kermanshah 18 19 Township in the northwestern part of Iran. The population of this study comprised of wheat 20 farmers in which 293 farmers were selected using multistage cluster sampling method. In the next step, the drought risk map for Kermanshah Township was developed, which revealed that 21 the majority of villages are at intense environmental risk. The result of this study has 22 23 implications for drought management practitioners. For example, the results can aid policymakers in the design of an early warning system in order to reduce risk and thus empower 24 farmers toward resilient farming. 25

Keywords: Drought; Early warning system; Risk management; Vulnerability; Environmental
risk; Resilient farming.

28 1. Introduction

Iran is located in a dry and semi-arid climate (Daryabari, 2011). Consequently, dry years are more prevalent than wet ones, which lead to prolonged drought incidents in the country every few years or even in continuous years (Daryabari, 2011; Babaee Fini and Alijani, 2013). Recently, the head of the National Center for Climatology in Iran announced that over the next 40 years, the Middle East region, including Iran, will face severe drought for 30 years (Jamshidi, 2016). This growing threat has extended throughout the country, more specifically in the western part of Iran, including Kermanshah province.

Moreover, the effect of drought phenomenon in rural areas is more extensive as it can lead 36 to significant challenges to the rural economy in general and agricultural production in 37 particular. In fact, reducing rainfall and its impact on surface and underground water flows, 38 along with inappropriate water management, have caused farmers to experience the worst drought 39 conditions and thus become more vulnerable to them (Zarafshani et al., 2012). Studies show 40 that the vulnerability of rural communities is in fact related to crisis management in Iran 41 42 (Karami, 2009). Many researchers have clearly indicated that crisis management is significantly non-productive, untimely, and not economically viable (Knutson et al., 2001; 43 44 Thurow and Taylor, 1999; Wilhite, 2017; Gerber and Mirzabaev, 2017; Zhao et al., 2017). However, for effective hazard management such as drought control, some scholars believe that 45 planning should be based on environmental risk management. Although researchers have 46 47 contended that for risk management strategy, it is imperative to launch an early warning system (Wilhite et al., 2014), this strategy is not well-appreciated among disaster policy-makers in Iran 48 (Sharafi, 2017). 49

The current study is novel due to implementing mutually compatible methodologies as a 50 means of comprehensively assessing drought costs and impacts. Currently, it is difficult to 51 52 compare many available estimates of drought costs. Therefore, in this study, the main step is to establish a drought early warning system to conduct a continuous risk assessment. Drought 53 risk assessment helps in identifying drought prone areas towards enabling policy-makers to 54 provide the necessary information and warn farmers based on the risk map of regions. Drought 55 56 risk assessment provides the opportunity to reduce the high cost of crisis management, which in turn increases the resilience of farmers and leads to sustainable production. 57

58 Therefore, the main objective of this study is to assess drought risk at farm level and build the foundations for drought early warning systems in Kermanshah Township. Toward this end, 59 the specific objectives are as follows: i) reviewing several methodologies to come up with 60 61 economic drought impact assessments and describing the main obstacles and opportunities facing the transition from crisis management to risk management, ii) exploring the drivers of 62 ex-ante and ex-post actions against drought, iii) determining the main actions linked with co-63 benefits beyond the management of drought risk, and iv) establishing a drought early warning 64 system to conduct a continuous risk assessment using the function of two elements such as 65 hazard (SPI and SDI indices) and vulnerability (exposure, sensitivity, and adaptive capacity). 66 The risk assessment is a part of a drought early warning system, and this paper would shed 67 light on establishing a drought early warning system. 68

69 *1.1.Risk assessment*

Risk assessment is a common type of risk knowledge creation. Moreover, the risk assessment process has three steps: (i) identifying the nature, location, intensity, and probability of a threat (hazard assessment); (ii) determining the existence and degree of vulnerability and exposure; and (iii) identifying the coping capacities and resources available to address or manage threats. Risk knowledge has the benefit of allowing decision-makers and the

community to understand their exposure to various hazards and their social, economic,
environmental, and physical vulnerabilities (Zhang, 2004; Chang Seng, 2010).

Risk is a combination of hazard, vulnerability, and coping capacity. ISDR expresses risk in 77 the context of the probability of harmful consequences or expected losses (i.e., deaths, injuries, 78 property, livelihoods, disrupted economic activity, or environmental damage). These 79 consequences result from crossovers between natural or human-induced disasters and 80 81 vulnerable conditions (UN/ISDR, 2004; Gao et al., 2018). In this direction, Sönmez et al. (2005) have estimated that the drought poses a significant risk to agriculture in the south-82 83 eastern region of Anatolia from a climatological perspective. In addition, Kahraman and Kaya (2009) estimated the drought risk of Istanbul dams using several processes-based indices, and 84 Sen et al. (2012) estimated the drought risk associated with crop productivity for future 85 projection. 86

87 1.1. Vulnerability assessment

Hazard is defined as a phenomenon that causes harm or loss to people's lives (Multihazard 88 Mitigation Council, 2002). Hazard leads to social, economic, and environmental impacts 89 (Aliasgar, 2012). In this research, drought is defined as a hazard, and its evaluation is based on 90 indicators such as frequency, duration, and severity of drought. Assessing the frequency, 91 duration, and severity of the drought is extremely important in planning future policy actions 92 to reduce the potential damages (Rajsekhar et al., 2015). Risk assessment is not only relevant 93 94 to hazard but also relevant to the vulnerability. Accordingly, the concept of vulnerability will be reviewed in the next section. The vulnerability assessment provides a framework for 95 identifying the social, economic, and environmental causes of a disaster (Zarafshani et al., 96 2016) and is a central moment in adaptation activity to mitigate adverse climatic impacts such 97 as drought (Corobov et al., 2013). In recent decades, a considerable number of studies (Füssel 98 and Klein, 2006; Füssel, 2007; Reed et al., 2013) have focused on vulnerability to climate 99

change. The result of such studies has led to several frameworks for vulnerability assessment.
Among vulnerability assessment models, the Intergovernmental Panel on Climate Change
(2001) has presented a model, which can be generalized to our context in Kermanshah
Township (Fig. 1).

104

105

Fig. 1. Vulnerability model presented by the IPCC (2001).

According to IPCC (2001), vulnerability is defined as the extent to which a natural or social 106 system is susceptible to damage from climate change. Furthermore, vulnerability is a function 107 of three attributes: 1) the "exposure" of a particular system to climate change, 2) the 108 "sensitivity" of the system to climate change, and 3) the "adaptive capacities" of the system to 109 cope with losses when exposed to climate change. Exposure is related to the degree in which a 110 system is exposed to environmental, political, and social stresses. Sensitivity is the degree in 111 which a social system is susceptible to hazards such as drought (Fontaine and Steinemann, 112 2009). Adaptive capacity tends to reduce stressful conditions. In other words, farmers with high 113 adaptive capacity tend to mitigate the harmful effect of drought. The IPCC model has been 114 considered by many researchers when measuring vulnerability (Sharma and Patwardhan, 2008; 115 Fontaine and Steinemann, 2009; Gizachew and Shimelis, 2014; Nazari et al., 2015; Zarafshani 116 et al., 2016; Zarafshani et al., 2019). 117

Garcia et al. (2011) used biophysical indicators (sensitive areas and sensitive products) and
 socioeconomic indicators (dependency rates such as old and young members of population and

income from climate sensitive sources) to estimate the sensitivity. Piya et al. (2012) identified
rural households' sensitivity to climate change by assessing the income structure (income based
on climatic conditions and non-agricultural income) and damage to assets (damage to farmland,
loss of livestock, and crop damage).

124 *1.2. Adaptive capacity assessment*

Due to lack of a comprehensive framework for assessing adaptive capacity (Jones, 2011), a large part of studies in this field are categorized based on five capitals (natural, economic, human, social, and physical capitals) (Zarafshani et al., 2016; Nazari et al., 2015; Maleki et al., 2014; Piya et al., 2012; Guerrin, 2009; Eakin and rquez-Tapia, 2008; Deressa, 2008; Brown et al., 2010; Brooks et al., 2005). However, Jones (2011) criticized using the five capitals as they do not provide a clear picture of the adaptive capacity of a system. Farmers' ability to adapt to growing hazards and environmental risks such as drought is related to their coping strategies.

The study by Venot et al. (2010) showed that farmers mitigated drought conditions through 132 various practices, including crop diversification, a shift in calendar, late sowing, selling their 133 livestock, and using sprinkler irrigation. Interestingly, Campbell et al. (2011) showed Jamaican 134 farmers' coping strategies to drought, including resistant crop varieties, crops with multiple use, 135 scaling down production, avoiding planting during the dry season, mulching, drip irrigation, 136 changing the timing of water application, buying water, sharing water, spraying plants with 137 leaf fertilizer, limiting cultivation, downscale cropping, seeking off-farm employment, seeking 138 139 labor work, and selling livestock. Bryan et al. (2011) showed an interesting result by arguing that meteorological information is an effective tool in enhancing the adaptive capacity of 140 farmers to mitigate the stressful effects of drought. Given the literature discussed above, Fig. 2 141 is a schematic representation of the main steps in designing a risk assessment model in 142 Kermanshah Township. 143

169 2. Research Method

This study utilized a survey research design in Kermanshah Township in the western part of Iran (Fig. 3). In the following section, the method of study (hazard assessment and vulnerability assessment) will be reviewed in detail.

173 174 175

Fig. 3. Geographical position of the study area.

176 2.1. Hazard assessment

177 In this research, the hazard is defined as the meteorological drought and hydrological 178 drought severity, which has different severity in different parts of Kermanshah. In the 179 following, the estimation of meteorological drought indices based on SPI indices will be 180 provided. Subsequently, the estimation of hydrological drought indices will be investigated.

181 2.1.1. Meteorological drought

In order to measure meteorological drought severity, the SPI index (Standardized Precipitation Index) proposed by McKee et al. (1993) was used. SPI is a climate drought index that calculates the probability of precipitation for timescales. As a matter of fact, the only needed input parameter is precipitation. The SPI is a powerful, flexible index that is simple to use. In addition, it is effective in analyzing both wet and dry periods/cycles, as well as drought warning severity. Positive SPI values are greater than median precipitation, and negative values
are less than median precipitation (World Meteorological Organization, 2012).

McKee et al. (1993) used the classification system shown in the SPI value (Table 1) to define drought intensities resulting from the SPI. A drought incident occurs at any time when the SPI is continuously negative and reaches an intensity of -1.0 or less. However, the incident

192 ends when the SPI becomes positive.

193	Table 1		
194	Drought	severity classification sy	stem based on SPI index.
	_	SPI values	Drought situation
		-2 and less	extremely dry

SFI values	Drought situation
-2 and less	extremely dry
-1.5 to -1.99	severely dry
-1.0 to -1.49	moderately dry
0 to -0.99	mild drought
0 to 0.99	mildly wet
+1.0 to +1.49	moderately wet
1.5 to 1.99	very wet
2.0+	extremely wet

195

200

In order to measure SPI for 12-month timescales, 10 barometric stations, including longterm precipitation statistics, were used (from 1985-1986 to 2014-2015). Table 2 shows
different rain station locations in Kermanshah Township.

199 **Table 2**

Rain station locations in Kermanshah Township.

Station	Village	Longitude	Latitude	Altitude (m)	Renovation years
Boozhan	Osmanvand	47.25	33.97	1600	11
Sarfiroozabad	Sarfiroozabad	47.28	34.06	1510	3
Sarabniloofar	Baladarband	46.87	34.40	1280	9
Mahidasht	Mahidasht Chaghanarges	46.85	34.27	1415	2
Shadman	Droodfaraman Gharahsoo	47.19	34.26	1320	7
Koozaran	SanjabiHaftas hian	46.60	34.50	1380	6
Marzbani	Bilavar	47.08	34.70	1650	10
Chenar- Jalalvand	Jalalvand	47.12	33.93	1140	11
Jologireh-olya	Miandarband	46.85	34.58	1180	2

201

202 To calculate the SPI index, the following formula presented by McKee et al. (1993) was used:

203

$$204 \qquad SPI = X_i - X$$

 $\mathbf{S}_{\mathbf{X}}$

- 206 X_i: Monthly rainfall
- 207 X: The average rainfall on the time scale
- 208 S_X : Deviation of rainfall on a time scale
- 209 2.1.2. Hydrological drought

The hydrological drought was measured using SDI (Streamflow Drought Index). This indicator was presented by Nalbantis et al. (2009) to identify the hydrological drought (Table 3). Based on this classification, positive SDI values indicate a normal or wet condition, whereas negative values indicate drought status.

Table 3 Classification of	bydrological drought based on SDI
Descript	tion Criterion
Extreme dro	sought $SDI < -2.0$
Severe dro	bught $-2.0 \leq \text{SDI} < -1.5$
Moderate dr	rought −1.5≤SDI <−1.0
Mild drou	ught -1.0≤SDI < 0.0
None drou	ught SDI≥0.0

216

214 215

Long-term Debi river statistics (30 years) that had a longer statistical period were used to calculate SDI. The hydrological drought was measured using 12-month time scales using the following formula provided by Nalbantis et al. (2009):

 $\begin{array}{ccc} 220\\ 221\\ 222\\ 222\\ \end{array} \quad & SDI_{i,k} = \underbrace{V_{i,k} - \overline{V_k}}_{\overline{S_k}} \end{array}$

- 223 $V_{i,k}$: Monthly river flow
- 224 $V_{k:}$ Mean value of cumulative streamflow for the kth period
- 225 $S_{k:}$ Standard deviation of cumulative streamflow for the kth period

Table 4 shows the geographic location of the hydrometric stations in Kermanshah

227 Township.

228 Table 4

229 Hydrometric station locations in Kermanshah Township.

Station	River	Village	Longitude	Latitude	Altitude (m)
Doabmereg	Gharahsoo	Sanjabi	47.47	34.33	1290
Doubliciteg	Gharansoo	Suijabi		57.55	1270

Khersabad	Mereg	Sarfiroozabad Haftashian Mahidasht Chaghanarges	47.44	34.30	1320
Faraman	Gharahsoo	Droodfaraman Gharahsoo Baladarband	47.15	34.14	1295
Hojatabad Razavar		Miandarband Bilavar	46.53	34.38	1300
Gamasiab	Gamasiab	Jalalvand Osmanvand	47.54	34.53	1410

Finally, the total weight of hazard indicators (SIP value and SDI value for the 2014-15 period) was considered as a drought hazard for each village. The weight of hazard indicators is calculated using the Shannon Entropy Method (Table 5).

234 235

Weight of hazard	indicators.	
Component	Index	Weight
Hazard	Meteorological drought severity in 2014-15	0.491
	Hydrological drought severity in 2014-15	0.509

236

237 2.2. Vulnerability assessment

238 The vulnerability was evaluated using the Fontaine and Steinemann (2009) formula:

239 Vulnerability = (Exposure + Sensitivity) / Adaptive Capacity

Using the literature review, variables for each component (exposure, sensitivity, and adaptive capacity) were extracted, and the indicators for each variable were identified through the index construction method (Table 6). Since each and every indicator held different scales,

243 we attempted to fix and homogenize the scales (Kalantari, 2001).

Fixing scales were assessed using Indexing Method. In this method, the maximum value of each index was considered as 100; thus, other values were proportionately given certain values. This method has the advantage of keeping the proportionate values unchanged. Thus, the different coefficients obtained are equal to different coefficients of the main values (Kalantari, 2001). Finally, using Shannon Entropy Method, the weight of each indicator (exposure, sensitivity, and adaptive capacity) was determined (Table 6).

250 Table 6

251 Weight of vulnerability indicators.

Component	Variable	Index	Weight
e lex)	Frequency of meteorological droughts	The ratio of meteorological drought for each village during the past 10 years to total drought for each village during the past 30 years	0.236
xposure ative inc	Frequency of hydrological drought	The ratio of hydrological drought for each village during the past 10 years to total drought for each village during the past 30 years	0.303
Leg E	Access to water (rain-fed farming)	Average water accessibility for irrigation (inches)	0.253
Ð	Access to water (irrigated farming)	Average water accessibility for irrigation (inches)	0.208
	Rate of individuals under 5 years old in household	The ratio of under 5 years old to total household	0.069
	Rate of literacy or low literacy adults in the household	The ratio of illiterate adults to the total household	0.078
	Household unemployment rate	The ratio of unemployed to the total household	0.080
	Income dependency on climate resources	The ratio of climate resource based income to total households' income	0.116
(X:	Rate of drought immigrant households	The ratio of drought immigrants to total households	0.054
ivity inde	who left farming due to drought	The ratio of unemployed (due to drought) to total household	0.052
ensiti șative	Number of land fragmentation near water resources	The ratio of land fragmentation near water resources to total land holdings	0.110
S (Neg	Distance from farmland to the main road	The average farm ownership from main road	0.088
	Damage to land due to drought	Percentage of damage to land due to drought	0.107
	Rate of livestock sold due to drought	The ratio of animal units sold to total livestock units	0.056
	Rate of farmland sold due to drought	The ratio of land sold to the total land	0.024
	The size of irrigated land	The size of irrigated land to the total land	0.104
	The size of rain-fed land	The size of fain-fed land to the total land	0.062
	Using new and high performance varieties	The ratio of farmers who use new and high-yielding wheat cultivars to the total number of farmers	0.039
	Using drought tolerant varieties	The ratio of farmers who use drought resistance wheat cultivars to the total number of farmers	0.041
	Using early yielding wheat cultivars	The ratio of farmers who used early wheat cultivars to the total number of farmers	0.026
	Tillage operations	The ratio of farmers who practiced minimum tillage to the total number of farmers	0.044
city x)	Crop rotation practice	The ratio of farmers who practiced crop rotation to the total number of farmers	0.042
Capac inde	Changes in wheat sowing date	The ratio of farmers who changed sowing date to the total number of farmers	0.034
tive (sitive	Less use of chemical fertilizer	The ratio of farmers who used less chemical fertilizers during drought to the total number of farmers	0.051
Adap (Po:	Less use of herbicides	The ratio of farmers who used less herbicides during drought to the total number of farmers	0.045
1	Weed control practices	The ratio of farmers who controlled weeds during drought to the total number of farmers	0.042
	Using more animal manure	The ratio of farmers who used animal manure during drought to the total number of farmers	0.024
	Increased row distances	The ratio of farmers who increased row distances during drought to the total number of farmers	0.027
	Cultivation of spring crops	The ratio of farmers who cultivated spring crops to the total number of farmers	0.028
	Irrigated channels construction	The ratio of farmers who constructed irrigation channels during drought to the total number of farmers	0.017

Bu	ying water during drought	The ratio of farmers who bought water during drought to the total number of farmers	0.023
Usi irri	ing less water during each gation period	The ratio of farmers who used less water during drought to the total number of farmers	0.035
Usi	ing new irrigation systems	The ratio of farmers who used new irrigation systems to the total number of farmers	0.020
Usi wat	ing plastic covers to conserve ter	The ratio of farmers who used plastic covers to conserve water to the total number of farmers	0.028
Sel	ecting suitable irrigation time	The ratio of farmers who selected suitable irrigation time to the total number of farmers	0.037
Av the	oid irrigation in the middle of day	The ratio of farmers who avoided mid-day irrigation during drought to the total number of farmers	0.029
Dig	gging wells	The ratio of farmers who dug well during drought to the total number of farmers	0.022
Dig	gging new wells	The ratio of farmers who dug new wells to the total number of farmers	0.014
Ree	ceiving a bank loan	The ratio of farmers who received bank loan to the total number of farmers	0.031
Usi	ing crop insurance	The ratio of farmers who used crop insurance to the total number of farmers	0.036
Pra	ecticing non-agricultural jobs	The ratio of farmers who turned to non-agricultural jobs during drought to the total number of farmers	0.038
Usi	ing savings in drought	The ratio of farmers who used their savings during drought to the total number of farmers	0.041
Usi	ing weather forecasting	The ratio of farmers who used meteorological forecasting to the total number of farmers	0.046
Co	ntact with agricultural experts	The ratio of farmers who contacted agricultural experts to the total number of farmers	0.048
Par	rticipating in extension classes	The ratio of farmers who participated in extension classes to the total number of farmers	0.034
Rec	ducing unnecessary expenses e clothes and so on	The ratio of farmers who reduced unnecessary expenses during drought to the total number of farmers	0.046
Cha	anging agricultural land to non-	The ratio of farmers who changed their land-based activities to non-agricultural activities to the total number of farmers	0.012

The population of this study comprised of 31,000 wheat farmers in Kermanshah Township. 253 Using a sample size table (which certifies a 5% margin of error) proposed by Bartlett et al. 254 (2001), 370 farmers were selected by a multi-stage cluster sampling method (12 villages, 12 255 clusters). The research instrument for assessing vulnerability was a questionnaire. The 256 257 vulnerability was measured through drought exposure (4 items), sensitivity (13 items), and adaptive capacity (30 items). Vulnerability questionnaire was distributed among the statistical 258 population, and finally, 293 questionnaires were completed and found to be suitable for 259 260 analysis (return rate: 79.2%). Reliability was measured using Cronbach's alpha coefficient (α=0.82). Internal validity was measured using a panel of experts (including the scientific staff 261 of the College of Agriculture, Razi and Shiraz University). 262

263	Finally, the risk was assessed using the multiplication of hazard and vulnerability. In some
264	studies, the relationship between vulnerability, hazard, and risk is presented in the following
265	formula (Wolfgang and Bollin, 2001; Global Water Partnership, 2015; Aliasgar, 2012; Füssel,
266	2007; Kumpulainen, 2006; Brooks et al., 2005; Wisner, 2004; 2001; Wolfgang et al., 2001).
267	$Risk = Vulnerability \times Hazard$
268	The Arc GIS software was utilized to graph the study area in terms of drought hazard, exposure,
269	sensitivity, adaptive capacity, vulnerability, and risk.
270	3. Result
271	3.1. Drought hazard assessment
272	3.1.1. Estimation of meteorological drought indices (SPI)
273	Two indicators of meteorological drought (SPI) and hydrological drought (SDI) were
274	used for hazard assessment.
275	Results indicate that the Sarfiroozabad station shows the highest drought frequency (18
276	meteorological droughts) in a 30-year period. Other stations have also experienced droughts,
277	including Mahidasht and Jologireholya stations (17 meteorological droughts), Chenar-
278	Jalalvand and Sarabniloofar stations (17 meteorological droughts), Shadman station (15
279	meteorological droughts), and Ghoharchagha and Koozaran stations (14 meteorological
280	droughts). It is worth mentioning that in recent years, the stations of Kermanshah Township have
281	experienced several droughts. In addition, droughts have been observed in all stations during
282	2014-2015 (Table 7).

Table 7

SPI trend in a one-year period at barometric stations in Kermanshah Township.

	Mahid	lasht	Sarabnilo	oofar	Sarfiroo	zabad	Chenar-J	alalvand	Booz	han	Jologire	holya	Marzbani		Kooza	ran	Ghoharcha	agha	Shadn	nan
Year	Drought situation	SPI	Drought situation	SPI	Drought situation	SPI	Drought situation	SPI	Drought situation	SPI	Drought situation	SPI	Drought situation	SPI	Drought situation	SPI	Drought situation	SPI	Drought situation	SPI
1985-1986	S. d.	0.54	S. d.	-0.10	S. W.	0.56	S. W.	0.30	S. w.	0.70	V. w.	1.52	V. w.	1.50	V. w.	1.67	V. w.	1.65	S. w.	0.79
1986-1987	S. d.	-0.10	S. d.	-0.08	S. W.	0.34	S. W.	0.28	S. W.	029	S. w.	0.30	Se. d.	-1.50	S. w.	0.22	S. d.	-0.38	S. w.	0.70
1987-1988	M. w.	1.21	M. w.	1.33	S. W.	0.86	S. W.	0.99	S. W.	0.83	V. w.	1.90	S. w.	0.37	V. w.	1.72	S. w.	0.23	V. w.	1.96
1988-1989	S. d.	0.94	S. d.	1.06	S. d.	-0.36	S. d.	-0.43	S. d.	-0.55	S. d.	-0.08	S. d.	-0.55	S. w.	0.36	V. w.	1.58	S. d.	-0.05
1989-1990	S. d.	0.08	S. d.	0.09	S. d.	-0.31	S. d.	-0.34	S. d.	-0.38	S. w.	0.75	S. w.	0.22	S. d.	-0.19	S. w.	0.39	M. w.	1.06
1990-1991	S. d.	-0.79	S. d.	-0.66	S. d.	-0.76	M. d.	-1.02	M. w.	-1.10	S. d.	-0.60	S. d.	-0.47	M. d.	-1.20	M. d.	-1.03	S. d.	-0.72
1991-1992	M. w.	1.02	S. W.	0.98	S. W.	0.03	S. W.	0.38	S. W.	0.21	M. w.	1.16	S. w.	0.33	S. w.	0.41	M. w.	1.23	S. w.	0.68
1992-1993	S. d.	-0.01	S. d.	-0.04	S. W.	0.53	S. d.	-0.47	S. d.	-0.29	S. d.	-0.63	S. d.	-0.23	S. w.	0.52	V. w.	1.50	S. w.	0.67
1993-1994	S. d.	0.52	S. W.	0.22	V. w.	1.87	M. w.	1.14	S. W.	0.99	S. w.	0.50	M. w.	1.30	S. w.	0.65	S. w.	0.30	S. w.	0.02
1994-1995	E. w.	2.69	E. w.	2.18	E. w.	2.89	E. w.	2.39	E. w.	3.26	V. w.	1.55	E. w.	2.58	V. w.	1.58	M. w.	1.21	E. w.	2.20
1995-1996	S. d.	-0.02	S. W.	0.09	V. w.	1.68	E. w.	2.94	E. w.	2.48	S. d.	-0.12	S. d.	-0.58	S. d.	-0.06	S. w.	0.82	S. d.	-0.12
1991-1997	S. d.	-0.58	S. d.	-0.55	S. d.	47	M. w.	1.29	M. w.	1.02	S. d.	-0.10	M. d.	-1.09	M. d.	-1.03	S. d.	-0.86	M. d.	-1.13
1997-1998	V. w.	1.68	V. w.	1.87	M. w.	1.40	S. W.	0.19	S. W.	0.26	V. w.	1.61	V. w.	1.66	M. w.	1.27	M. w.	1.01	S. w.	0.82
1998-1999	S. d.	-1.65	M. d.	-1.43	M. d.	-1.08	M. d.	-1.40	M. d.	-1.28	S. d.	-0.57	S. d.	-0.57	Se. d.	-1.08	S. d.	-0.86	S. d.	-0.85
1999-2000	S. d.	-1.56	M. d.	-1.24	M. d.	-1.43	S. d.	-0.55	M. d.	-1.19	Se. d.	-1.60	M. d.	-1.01	Se. d.	-1.55	Se. d.	-1.83	M. d.	-1.37
2000-2001	S. d.	0	S. d.	-0.41	S. d.	-0.69	S. d.	0.02	S. d.	-0.65	M. d.	-1.05	S. d.	-0.70	S. d.	-0.95	S. d.	-0.94	M. d.	-1.21
2001-2002	S. d.	-0.05	S. d.	-0.34	S. d.	-0.27	S. d.	-0.19	S. d.	-0.34	S. w.	0.06	S. w.	0.31	S. w.	0.24	S. d.	-0.26	S. w.	0.51
2002-2003	S. d.	-0.10	S. d.	-0.27	S. d.	-0.30	S. d.	-0.12	S. W.	0.03	S. d.	-0.13	S. w.	0.61	S. w.	0.10	S. d.	-0.14	S. d.	-0.31
2003-2004	S. d.	-0.26	S. W.	0.32	S. d.	0.28	S. d.	0.01	S. d.	0.08	S. d.	-0.06	S. w.	0.07	S. w.	0.73	S. w.	0.60	S. w.	0.84
2004-2005	S. d.	-0.12	S. W.	0.39	S. d.	-0.48	S. d.	-0.91	S. d.	-0.24	S. w.	0.10	S. w.	0.50	S. w.	0.84	S. w.	0.84	S. d.	-0.53
2005-2006	S. W.	0.75	V. w.	1.63	S. d.	-0.56	S. W.	0.40	S. W.	0.27	S. w.	0.79	S. w.	0.78	S. w.	0.86	S. w.	0.60	S. w.	0.27
2006-2007	S. W.	0.38	S. W.	0.05	S. W.	0.36	S. W.	0.28	S. W.	0.18	S. d.	-0.12	M. w.	1.45	S. w.	0.49	S. w.	0.42	M. w.	1.08
2007-2008	E. d.	-2.35	E. d.	-2.54	Se. d.	-1.72	Se. d.	-1.85	Se. d.	-1.43	E. d.	-2.12	Se. d.	-1.69	E. d.	-2.30	E. d.	-2.30	E. d.	-2.13
2008-2009	S. d.	-0.73	S. d.	-0.93	S. d.	-0.69	S. d.	-0.65	S. d.	-0.93	M. d.	-1.15	S. d.	-0.10	S. d.	-0.08	S. d.	-0.51	S. d.	-0.39
2009-2010	S. W.	0.41	S. W.	0.70	S. w.	0.83	S. W.	0.39	S. W.	0.38	V. w.	1.62	S. w.	0.47	S. w.	0.25	S. w.	0.13	S. w.	0.44
2010-2011	S. d.	-0.51	S. d.	-0.37	S. d.	-0.11	S. d.	-0.21	S. d.	-0.50	S. w.	0.07	S. d.	-0.18	S. d.	-0.15	S. d.	-0.85	S. d.	-0.82
2011-2012	M. d.	-1.14	M. d.	-1.03	S. d.	-0.56	S. d.	-0.69	S. d.	-1.17	S. d.	-0.31	S. d.	-0.48	S. d.	-0.41	S. w.	0.24	M. d.	-1.10
2012-2013	S. d.	-0.12	S. d.	-0.24	S. d.	-0.32	S. d.	-0.94	S. d.	-0.28	S. d.	-0.86	M. d.	-1.47	S. d.	-0.97	S. d.	-0.96	S. d.	-0.67
2013-2014	S. W.	0.72	S. W.	0.33	S. d.	-0.21	S. d.	-0.22	S. d.	-0.28	S. d.	-0.46	S. d.	-0.50	S. d.	-0.13	S. d.	-0.94	S. w.	0.57
2014-2015	S. d.	-0.85	M. d.	-1.02	M. d.	-1.29	S. d.	-0.98	S. d.	-0.35	S. d.	-0.92	M. d.	-1.02	S. d.	-0.89	S. d.	-0.89	M. d.	-1.22

S. d. (Slightly dry) M. d. (Moderately dry) Se. d. (Severely dry) E. d. (Extremely dry)

S. w. (Slightly wet)

M. v. (Moderately wet) V. w. (Very wet)

E. w. (Extremely wet)

Table 8SDI trend in a one-year period at hydrometric stations in Kermanshah Township.

Year	Year Gamasiab		Faraman-Ghorba	ighestan	Sarasiab		Khersabad		Doabmereg	
	Drought situation	SDI	Drought situation	SDI	Drought situation	SDI	Drought situation	SDI	Drought situation	SDI
1985-1986	None drought	0.14	None drought	0.54	None drought	1.47	None drought	0.44	None drought	0.37
1986-1987	None drought	0.32	None drought	0.75	None drought	1.47	None drought	0.36	None drought	0.65
1987-1988	None drought	1.03	None drought	2.43	None drought	1.80	None drought	1.65	None drought	2.38
1988-1989	None drought	0.33	None drought	0.78	None drought	1.47	None drought	0.89	None drought	0.60
1989-1990	None drought	0.07	None drought	0.61	None drought	1.47	None drought	0.84	None drought	0.56
1990-1991	Mild drought	-0.27	Mild drought	-0.24	None drought	1.47	Mild drought	-0.19	Mild drought	-0.18
1991-1992	None drought	1.32	None drought	1.86	None drought	1.14	None drought	1.73	None drought	1.75
1992-1993	None drought	1.12	None drought	0.14	Mild drought	-0.44	None drought	0.63	Mild drought	-0.07
1993-1994	None drought	0.32	None drought	0.58	None drought	0.12	None drought	0.61	None drought	0.54
1994-1995	None drought	1.45	None drought	1.61	None drought	1.15	None drought	3.01	None drought	2
1995-1996	None drought	0.72	None drought	0.82	None drought	0.22	None drought	1.03	None drought	0.93
1996-1997	Mild drought	-0.13	Mild drought	-0.55	Mild drought	-0.92	Mild drought	-0.09	Mild drought	-0.13
1997-1998	Mild drought	0.09	None drought	1.67	None drought	0.54	Mild drought	1.22	Mild drought	-0.13
1998-1999	Mild drought	-0.56	Mild drought	-0.83	Moderate drought	-1.10	Mild drought	-0.64	Moderate drought	-0.63
1999-2000	Mild drought	-0.54	Moderate drought	-1.38	Moderate drought	-1.31	Mild drought	-0.77	Moderate drought	-1.03
2000-2001	Mild drought	-0.51	Moderate drought	-1.20	Moderate drought	-1.06	Mild drought	-0.73	Moderate drought	-1.05
2001-2002	Mild drought	-0.48	Mild drought	-0.75	Mild drought	-0.60	Mild drought	-0.72	Mild drought	-0.83
2002-2003	Mild drought	-0.25	Mild drought	-0.41	Mild drought	-0.30	Mild drought	-0.78	Mild drought	-0.25
2003-2004	Mild drought	-0.18	Mild drought	-0.28	Mild drought	-0.13	Mild drought	-0.38	Mild drought	-0.33
2004-2005	Mild drought	-0.06	None drought	0.35	None drought	0.31	Mild drought	-0.42	None drought	0.17
2005-2006	None drought	0.12	None drought	0.54	None drought	0.23	None drought	0.21	Mild drought	-0.11
2006-2007	Mild drought	0.29	None drought	0.07	Mild drought	-0.09	Mild drought	-0.64	Mild drought	-0.04
2007-2008	Mild drought	-0.32	Moderate drought	-1.14	Moderate drought	-1.30	Mild drought	-0.92	Moderate drought	-1.15
2008-2009	Mild drought	-0.67	Moderate drought	-1.06	Mild drought	-0.73	Mild drought	-0.90	Moderate drought	-1.13
2009-2010	Mild drought	-0.38	Mild drought	-0.46	Mild drought	-0.44	Mild drought	-0.86	None drought	0.27
2010-2011	Mild drought	-0.70	Mild drought	-0.91	Mild drought	-0.93	Mild drought	-0.92	Mild drought	-0.94
2011-2012	Mild drought	-0.58	Mild drought	-0.89	Mild drought	-0.66	Mild drought	-0.90	Mild drought	-0.97
2012-2013	Mild drought	-0.66	Mild drought	-0.89	Mild drought	-0.92	Mild drought	-0.92	Moderate drought	-1.07
2013-2014	Mild drought	-0.30	Mild drought	-0.77	Mild drought	-0.76	Mild drought	-0.91	Mild drought	-0.95
2014-2015	Mild drought	-0.73	Moderate drought	-1.07	Moderate drought	-1.15	Mild drought	-0.92	Moderate drought	-1.21

283 *3.1.2. Estimation of hydrological drought indices (SDI)*

Results of hydrological drought show that the most intensive drought occurred in Doabmereg station with a frequency of 19 times in a 30-year period. However, Faraman experienced the least frequency (16 droughts). This result clearly indicates that drought occurrence has increased in the study area. For example, the Khersabad station had experienced 19 drought incidents within a 30-year period (1985-86 to 2014-15). This condition remains the same across Kermanshah hydrometric stations (Table 8).

290 291
 Table 9

 Value of drought hazard across villages in Kermanshah Township.

Villages		Hydrological drought	Hazard	Ranking
Droodfaraman	-1.22	-1.07	-2.29	1.5
Gharahsoo	-1.22	-1.07	-2.29	1.5
Sarfiroozabad	-1.29	-0.92	-2.21	3
Bilavar	-1.02	-1.15	-2.17	4
Sanjabi	-0.89	-1.21	-2.10	5
Baladarband	-1.02	-1.07	-2.09	6
Miandarband	-0.92	-1.15	-2.07	7
Haftashian	-0.89	-0.92	-1.81	8
Mahidasht	-0.85	-0.92	-1.77	9.5
Chaghanarges	-0.85	-0.92	-1.77	9.5
Jalalvand	-0.98	-0.73	-1.71	11
Osmanvand	-0.35	-0.73	-1.08	12

the highest drought severity (-2.29). Moreover, Sarfiroozabad and Bilavar villages were ranked

The results also indicate that the crisis was more severe in 7 villages. In addition, 4 villages were in very intense condition, and finally, 1 village was in intense condition. Fig. 4 (A) shows

the hazard prone areas in Kermanshah Township¹.

300

²⁹² 293

Total Mean: 1.95 Total Std. deviation: 0.36

The result of the drought hazard showed that Droodfaraman and Gharahsoo villages had

³rd and 4th in terms of drought hazard with the values of -21.2 and -2.17 (Table 9).

¹ These maps are provided in the UTM system and in Zone 38N.

Fig. 4. Drought hazard (A), exposure (B), sensitivity (C), adaptive capacity (D), vulnerability (E), and risk (F) prone areas in the study area.

321 *3.2. Vulnerability assessment*

322 *3.2.1.* Drought exposure assessment

Exposure, sensitivity, and adaptive capacity components were evaluated using the formula proposed by Fontaine et al. (2009). This formula is derived from the IPCC model. Exposure was measured using four indicators. The total weight of the indicator was considered for each village based on the exposure value (Table 10).

327Table 10328Value of drought exposure across villages in Kermanshah Township.

	0	
Villages	Exposure	Ranking
Osmanvand	93.81	1
Haftashian	93.03	2
Sarfiroozabad	87.20	3
Jalalvand	86.27	4
Sanjabi	85.43	5
Droodfaraman	84.80	6
Mahidasht	83.74	7
Bilavar	83.36	8
Baladarband	82.04	9
Gharahsoo	78.81	10
Chaghanarges	77.98	11
Miandarband	74.87	12
Tota	l Mean: 84.28	
Total St	d. deviation: 5.6	51

Exposure range: 0-100

330 331

329

As shown in Table 13, Osmanwand (93.81), Haftashian (93.03), and Sarfirozabad (87.20) were ranked high in terms of drought exposure. However, Chaghanarges (77.98) and Miandarband (74.87) were ranked low in terms of drought exposure.

The classification of villages in terms of drought exposure intensity shows that 2 villages were in critical condition, whereas 7 villages were in very intense condition. Finally, 3 villages were in intense condition. Moreover, Fig. 4 (B) shows the drought exposure prone areas in Kermanshah Township.

339 *3.2.2.* Drought sensitivity assessment

340 The sensitivity component was evaluated using 13 indicators. The total weight of each341 indicator for each village reflects the sensitivity of that village.

 Table 11

 Value of drought sensitivity across villages in Kermanshah Township.

Villages	Sensitivity	Ranking
Miandarband	75.20	1
Haftashian	72.17	2
Sarfiroozabad	69.45	3
Bilavar	67.78	4
Jalalvand	66.88	5
Mahidasht	66.03	6
Osmanvand	63.23	7
Baladarband	61.46	8
Droodfaraman	57.73	9
Sanjabi	57.14	10
Gharahsoo	56.60	11
Chaghanarges	53.33	12
To	tal Mean: 63.92	

Total Std. deviation: 6.81

Exposure range: 0-100

345 346 347

348

Table 11 shows the value of drought sensitivity for each village in Kermanshah Township. The villages of Miandarband (75.20), Haftashian (72.17), and Sarfiroozabad (69.45) ranked first to third in terms of sensitivity, while the lowest sensitivity belonged to Gharahsoo and Chaghanarges villages (56.60 and 53.33).

Table 14 represents the level of sensitivity in Kermanshah Township. The result showed that 3 villages were in critical condition, 5 villages were in very intense condition, and 4 villages were in intense condition. Fig. 4 (C) shows the drought sensitive prone areas in Kermanshah Township.

357

358 3.2.3. Adaptive capacity assessment

Adaptive capacity was measured with 30 indicators. The total weight of these indicators constitutes the amount of adaptive capacity of each village. Information on prioritization of villages in terms of adaptive capacity is visible in Table 12.

362

363

364

365 366

367

Table 12

Value of drought adaptive capacity across villages in Kermanshah Township.

Villages	Adaptive Capacity	Ranking
Miandarband	81.68	1
Chaghanarges	81.11	2
Jalalvand	78.10	3
Gharahsoo	74.64	4
Baladarband	74.59	5
Droodfaraman	69.94	6
Sanjabi	66.64	7
Bilavar	64.55	8
Osmanvand	60.49	9
Sarfiroozabad	52.58	10
Mahidasht	51.33	11
Haftashian	45.93	12
	Total Mean: 66.80	
Т	otal Std. deviation: 12.09	

371 372 373

Adaptive capacity range: 0-100
According to Table 12, farmers in Miandarband, Chaghanarges, and Jalalvandhad have a
better adaptive capacity (81.68, 81.11, 78.10) compared to their counterparts. However,
farmers in Mahidasht and Haftashian had somewhat weak adaptive capacity (51.33, 45.93)
towards drought.

In terms of the level of adaptive capacity, 6 villages were considered highly adaptive, whereas 3 villages were considered moderately adaptive, and finally, 3 villages were considered low adaptive. Fig. 4 (D) shows the drought adaptive capacity prone areas in Kermanshah Township.

382 *3.2.4.* Drought vulnerability assessment

According to Table 13, the result of vulnerability assessment revealed that Haftashian (3.60),

384 Sarfiroozabad (2.98), and Mahidasht (2.92) were most vulnerable towards drought. On the

- other hand, Gharahsoo and Chaghanarges were least vulnerable towards creeping hazards such
- as drought (1.81, 1.62).

387
388

 Table 13

 Value of drought vulnerability across villages in Kermanshah Township.

 Villages

 Villages

Villages	Vulnerability	Ranking
Haftashian	3.60	1
Sarfiroozabad	2.98	2
Mahidasht	2.92	3
Osmanvand	2.60	4
Bilavar	2.34	5

Sanjabi	2.14	6
Droodfaraman	2.04	7
Jalalvand	1.96	8
Baladarband	1.92	9
Miandarband	1.84	10
Gharahsoo	1.81	11
Chaghanarges	1.62	12
	Total Mean: 2.31	

391

Total Std. deviation: 0.59

392	The level of vulnerability among farmers illustrated that 2 villages were in critical
393	condition, 3 villages were in very intense condition, and finally, 7 villages were in intense
394	condition. Fig. 4 (E) shows the status of the villages of Kermanshah in terms of vulnerability.

395

396 *3.3. Drought risk assessment*

As already stated, risk is a function of two components of hazard and vulnerability, which are shown in the following table. Therefore, the drought risk was investigated using this relationship in the villages of Kermanshah Township (Table 14).

400 401

402 403

Table 14 Value of drought risk correct villages in Korrectichen T.

Villages	Hazard	Vulnerability	Risk	Rankin
Sarfiroozabad	-2.21	2.98	-6.58	1
Haftashian	-1.81	3.60	-6.52	2
Mahidasht	-1.77	2.92	-5.17	3
Bilavar	-2.17	2.34	-5.08	4
Droodfaraman	-2.29	2.04	-4.67	5
Sanjabi	-2.10	2.14	-4.49	6
Gharahsoo	-2.29	1.82	-4.17	7
Baladarband	-2.09	1.92	-4.01	8
Miandarband	-2.07	1.84	-3.81	9
Jalalvand	-1.71	1.96	-3.35	10
Chaghanarges	-1.71	1.62	-2.87	11
Osmanvand	-1.08	2.60	-2.81	12
Total Mean: -3.99				
Total Std. deviation: 2.42				

404 Results of drought risk assessment revealed that farmers in Sarfiroozabad (-6.58), Haftashin

405 (-6.52), and Mahidasht (-5.17) were at high risk, whereas farmers in Chaghanarges (-2.87) and

406 Osmanvand (-2.81) villages were facing minimum risk.

Based on the risk level, 2 villages in Kermanshah Township were in critical condition,
whereas 5 villages were in very intense condition, and finally, 5 villages were facing intense
conditions. Fig. 4 (F) shows the drought risk prone areas in Kermanshah Township.

410

411 **4.** Discussion

412 *4.1. Hazard assessment*

The risk assessment proposed in this study has provided a methodology for Iran. The country is unable to develop its own risk assessments due to poor resources and facilities. Disaster authorities can use this map to allocate resources across townships in Kermanshah province. The results can also be used to develop local and national adaptive capacity to control drought in Iran.

The present study also showed that Kermanshah Township has experienced drought for the 418 past 30 years; thus, it has become a recurrent incident. This is due to the fact that the majority 419 420 of farmlands in Kermanshah Township are rain-fed. Shewmake (2008), Paavola (2008), Trærup (2007), and Alcamo (2005) have revealed that rain-fed farms are more affected by 421 422 climate change and thus are more vulnerable. The obtained results indeed suggest that the 423 drought incident will be prolonged in the study area; therefore, farmers should take appropriate actions to compensate for the severe effects of drought. Jamshidi et al. (2016) confirmed that 424 the climate in Iran is changing in a way that the country will experience prolonged drought in 425 426 the next 40 years.

In addition, the results showed that the majority of villages in Kermanshah Township have experienced both hydrological and meteorological drought. This means that farmers in those regions have faced dry rivers as well as dry wells, which in turn have reduced the adaptive capacity of farmers, thus making them more vulnerable. In this regard, Koochaki et al. (2007) argued that data (from 37 meteorological stations across Iran) showed an increase in average temperature over 25-50 years. This clearly indicates that water management policy-makers in 433 Iran should focus their attention on measuring both meteorological and hydrological drought434 in order to set a reliable drought early warning system.

435 *4.2. Exposure assessment*

The findings revealed that farmers' exposure to drought across villages was high. However, 436 the variation of exposure between villages is somewhat different. Recurring drought incidents 437 in the region, on the one hand, and lack of water access, on the other hand, have created a 438 439 critical status for farmers in arid and semi-arid areas. As mentioned earlier, low precipitation across the region has dried up rivers, wells, and ganats, which in turn has increased farmers' 440 441 vulnerability. High exposure to drought forced farmers to leave their land for better opportunities, and other farmers have limited irrigation and crop production. This dilemma was 442 even common in irrigated farming. Brant (2007) and Wilhelmi and Wilhite (2002) showed that 443 lack of access to water supply tends to decrease farmers' resilience and thus increase their 444 vulnerability. 445

446 *4.3. Sensitivity assessment*

The region's sensitivity analysis showed that farmers were highly sensitive to conditions of 447 drought. According to the findings, "the size of irrigated land" is one of the indicators that has 448 made farmers more sensitive to drought conditions. This can be explained by the fact that rain-449 fed farming is more prevalent in the studied region. In general, rain-fed farming does not take 450 much time to work. In other words, farmers have limited adaptive capacity depending on 451 natural precipitation. Although Iran's government has provided subsidies for rain-fed farmers 452 to practice conservative agriculture, in reality, farmers are not motivated to practice 453 conservative agriculture. This is due to the fact that most farmers believe that conservative 454 agriculture plays a limited role in improving their economic conditions. Therefore, most rural 455 development projects such as limited tillage, no-tillage, and interventions of climate smart 456 agriculture have not been successful in recent years. In line with the results of this study, several 457

studies, including Zarafshani et al. (2012), Shewmake (2008), and Paavola (2008), also showed
that farmers who rely on rainfall are more sensitive to drought compared with those with
irrigated farming.

Loss of land due to drought is another indicator of sensitivity. When farmers are forced to leave their farms unplanted, their income reduces drastically. Research shows that major sources of income for Iranian farmers are based on the size of land and yield. When drought hits rural communities, production loss is the first and direct impact. The study by Paavola (2008) confirms that income loss has a significant role in increasing farmers' vulnerability. Eakin and Tapia (2008) and Guerrin (2009) also showed that damage to land due to drought has an effect on farmers' sensitivity towards drought.

The biophysical status of the study area showed that those farmers who had access to water 468 were somewhat in a better position compared with those without access to nearby water. The 469 proximity to the water source leads to cheaper water prices as well as low pipes and fittings 470 costs. In other words, water distribution in well-designed irrigation systems tends to save a 471 large amount of money and thus build farmers' resilience to drought sensitivity. However, our 472 study revealed that farmers are faced with high water distribution costs due to the distance from 473 the water source. In this regard, Garcia et al. (2011) argue that some areas are more susceptible 474 to disasters (sensitive areas); therefore, they suffer more damage during hazards. The 475 researchers introduced this kind of sensitivity as biophysical sensitivity. Thus, during drought, 476 lands located near water resources are less susceptible. 477

One of the interesting indicators of sensitivity is known as "climate change migration". In the study area, it was concluded that climate change migration had become an epidemic among rural populations. Although researchers have concluded that rural migration is considered as an adaptive capacity towards natural disasters such as drought (Vento et al., 2010; Singstam, 2009; Shewmake, 2008), only a few researchers have shown concern towards this notion.

483 *4.4. Adaptive capacity assessment*

The results showed that the majority of farmers in this study were highly to moderately adaptive to the drought incidents. The rest of this article will discuss some of the shared adaptive capacity indicators across villages in Kermanshah Township.

Tillage operation is one of the key indicators of adaptive capacity. Extension agents have 487 consistently emphasized minimum tillage practices among farmers in the study area. In other 488 489 words, farmers are motivated to practice minimum or no-tillage operations as a means to save or conserve water resources. Numerous researchers have emphasized that soil conservation 490 491 practices are among the effective adaptive strategies when dealing with drought (Gwambene and Majule, 2010; Zarei et al., 2014). Minimum tillage practices also tend to preserve crop 492 remains in the soil that turn into usable fertilizers and prevent water evaporation from sunlight, 493 which in turn, conserve water in the soil (Keshavarz and Karami, 2008). 494

The results also revealed that minimum use of chemical fertilizers and herbicides was practiced by farmers as an adaptive strategy. Studies showed that the use of chemical fertilizers and herbicides during drought not only creates more water stress for plants but also eradicates organisms that are helpful in water infiltration (Karami, 2008; Sharafi and Zarafshani, 2014). Thus, such an adaptive strategy is considered as an effective mitigation method in dealing with drought incidents.

The results of this study indicated that farmers' information has helped them use effective adaptive strategies to reduce their vulnerability towards drought. For example, contacting extension agents, using the weather forecasts, using appropriate irrigation timing, changing the wheat sowing date, and avoiding mid-day irrigation were all effective in coping with drought incidents. Several studies have shown that farmers do not operate based on a conventional agricultural calendar during climatic hazards, but their coping behavior is based on previous rainfall duration (Vento, 2010; Mengistu, 2011; Ifeanyi-obi et al., 2012). In Iran, the

government-based extension system has its strengths and weaknesses. For example, when 508 farmers are motivated to contact extension agents, it shows that the extension system is working 509 510 effectively to the extent that target groups are willing to use extension advice to cope with drought. This, in turn, would lead to a situation where agents provide farmers with 511 meteorological information to improve crop production. Pat and Guata (2002) agreed that 512 farmers with high meteorological literacy would more likely use weather information for crop 513 514 cultivation. In addition, Simlton et al. (2009) concluded that farmers who have more access to meteorological information tend to use this information in selecting suitable seeding dates, 515 516 which in turn, can help them cope with drought more effectively. In other words, the advantage of contacting agents is to use weather forecast information and receive information for proper 517 planting timing. 518

519 5. Conclusion and recommendations

Drought risk reduction measures require long term plans, and early warning should be seen 520 as a strategy to effectively reduce the growing vulnerability of communities and assets (Grasso, 521 2009). In terms of drought early warning systems, it is generally recognized that it is 522 fundamental to establish an effective drought early warning system to better identify the risk 523 and better monitor the level of vulnerability of farmers (Grasso, 2009). The main argument of 524 this study is that an effective and sustainable DEWS depends on multi-level governance, 525 institutional arrangements, and frameworks that draw on attributes of risk assessment for a 526 527 creeping hazard such as drought.

In this regard, Iran has a weak system of governance and would probably face tough challenges to implement and sustain an effective DEWS. However, by embarking and focusing on multi-stakeholder perspectives, the current challenges can be overcome. For example, sound data is necessary for implementing an effective drought early warning system. However, Iran is facing issues such as data poverty to develop its own risk assessments. Poor data sources are due to weak real-time sensors that are required for a disaster such as drought that usually affects
a much larger, less dense, and less developed area. Moreover, although Iran has meteorological
and hydrological stations throughout the country, inadequate and less coordinated network of
stakeholders creates an ineffective spatial characterization of drought. In addition, these
stations are only capable of presenting raw data which is not adequate and in most cases is less
up-to-date.

Finally, for a drought early warning system to be used by drought policy-makers, it is necessary that the system provides valid information. A wrong forecast creates distrust among users which in turn makes any preventive measures unsuitable. Hence, drought early warning system administrators should make sure that reliable information is being communicated to decision-makers and the general public.

544 Potential future research directions are as follows:

Building up case studies and evaluating the costs of action versus inaction against
droughts using consistent and mutually comparable methodological approaches. This
should allow a better understanding of the drought costs, impact pathways,
vulnerabilities, costs and benefits of various crisis and risk management approaches
against droughts, and the co-benefits of risk management approaches. These actions
will ultimately lead to better informed policy and institutional actions on droughts.

Comprehensive evaluations of the costs of action need to be performed by drought risk
 assessments. They require weather and drought monitoring networks with sufficient
 coverage as well as the adequate human capacity to analyze and transform this
 information into drought preparedness and mitigation actions.

555

556 Acknowledgment

The authors would like to thank Dr. Khadijeh Moradi for providing the illustrated maps in thisstudy.

559 **References**

- 560 Adger, W. N. 2006. Vulnerability. Global Environ Chang. 16, 268-281.
- 561 Alcamo, J., Acosta-Michlik, L., Carius, A., Eierdanz, F., Klein, R., Krömker, D., Tänzler, D. 2005. A
- new approach to the assessment of vulnerability to drought, Presented at concluding symposium of
- the German climate research programme (DEKLIM), Leipzing.
- Aliasgar, K. 2012. Developing a geoinformatics based early warning system for floods in the caribbean,
 Trinidad and Tobago, PhD thesis, Southern Cross University, Lismore, NSW.
- Babaeefini, A., Alijani, B. 2013. Spatial analysis of long term drought in Iran. Natl Geogr Research,
 45(3), 1-21.
- Bartlett, J. E., Koterlik, J. W., Higgins, Ch. C. 2001. Organizational research: Determining appropriate
 sample size in survey research. ITLPJ, 19(1), 43-50.
- Brant, S. 2007. Assessing the vulnerability to drought in Ceara, Northeast Brazil. Retrieved 08.02.2009
 from the World Wide Web: http://hdl.handle.net/2027.42/57432.
- 572 Brooks, N., Adger, W. N., Kelly, P. M. 2005. The determination of vulnerability and adaptive capacity
- at the national level and the implications for adaptation, Global Environ Chang, 15, 151-163.
- Brown, P. R., Nelson, R., Jacobs, B., Kokic, P., Tracey, J., Ahmed, M., DeVoil, P. 2010. Enabling
 natural resource managers to self-assess their adaptive capacity. AgricSyst, 103(8), 562-568.
- 576 Bryan, E., Ringler, C., Okoba, B., Roncoli, C., Silvestri, S., Herrero, M. 2011. Adapting agriculture to
- 577 climate change in Kenya: Household and community strategies and determinants. In International
- 578 Conference on May (Vol. 18).
- 579 Campbel, D., Barker, D., McGregor, D. 2011. Dealing with drought: Small farmers and
 580 environmental hazards in southern St. Elizabeth, Jamaica, ApplGeogr, 31, 146-158.
- 581 Chang Seng, D. 2010. The Role of risk governance, multi-institutional arrangements and polycentric
- frameworks for a resilient Tsunami early warning system in Indonesia, PhD dissertation.

- 583 Crichton, D. 1999. The risk triangle. In: Ingleton, J. (ed.), Natural disaster management. Tudor Rose,
 584 London.
- Daryabari, J. 2011. The zoning of droughts in Iran over the last 50 years, Encyclopedia (geography),
 82, 33-48.
- 587 Deressa, T., Hassan, R. M., Ringler, C. 2008. Measuring Ethiopian framers' vulnerability to climate
 588 change across regional sates, International Food policy research institute.
- Eakin, H., rquez-Tapia, L. A. B. 2008. Insights into the composition of household vulnerability from
 multicriteria decision analysis, Global Environ Chang, 18, 112–127.
- Fontaine, M. M., Steinemann, A. C. 2009. Assessing vulnerability to natural hazards: Impact-based
 method and application to drought in Washington State, Nat Hazards Rev, 10, 11-18.
- Füssel, H. M., Klein, R.J., 2006. Climate change vulnerability assessments: an evolution of conceptual
 thinking. Clim. Change 75, 301–329.
- Füssel, H.-M. 2007. Vulnerability: A generally applicable conceptual framework for climate change
 research, Global Environ Chang, 17, 155-167.
- Füssel, H.-M., Klein, R. J. T. 2002. Assessing vulnerability and adaptation to climate change: an
 evolution of conceptual thinking, paper presented at the UNDP expert group meeting on integrating
 disaster reduction and adaptation to climate change, Havana, Cuba.
- Gao, X., Liud, Zh., Zhaoa, X., Lingc, Q., Huoc, G., Wu, P. 2018. Extreme natural drought enhances
 interspecific facilitation in semiarid agroforestry systems. AgricEcosyst Environ, 265, 444–453
- Garcia, J. N., Wagan, A. M., Medina, S. M. 2011. Vulnerability and adaptive capacity assessment in
 different a groecosystems (VAS-Agro). Agricultural Cluster, University of the Philippines Los
- Baños. https://www.apn gcr.org/resources/files/original/a6ea8463f54ba22a1f66ae550f6a4e8d.pdf
- George, D. A., Clewett, J. F., Wright, A. H., Birch, C. J., Allen, W. R. 2007. Improving farmer
 knowledge and skills to better manage climate variability and climate change, JIAEE, 14 (2), 5-18.
- 607 Gerber, N., Mirzabaev, A. 2017. Benefits of action and costs of inaction: Drought mitigation and
- 608 preparedness a literature review. World Meteorological Organization (WMO) and Global Water
- 609 Partnership (GWP) (2017). Benefits of action and costs of inaction: Drought mitigation and

- 610 preparedness a literature review (N. Gerber and A. Mirzabaev). Integrated Drought Management
- 611 Programme (IDMP) Working Paper 1. WMO, Geneva, Switzerland and GWP, Stockholm, Sweden.
- 612 Ghambarali, R., Papzan, E., Afsharzadeh, N. 2012. Farmers' views on climate change and adaptation
- 613 strategies, Rural Research, 3(3), 187-208.
- Gizachew, L., Shimelis, A. 2014. Analysis and mapping of climate change risk and vulnerability in
 central Rift Valley of Ethiopia. African Crop Science Journal, 22(4), 807-818.
- 616 Global Water Partnership (Central and Eastern Europe). 2015. Drought risk management scheme -a
- decision support system, Technical note: Integrated Drought Management Programme in Centraland Eastern Europe, p. 1-13.www.gwpcee.org.
- Grasso, V. F. 2009. Early warning systems: State of art analysis and future directions, Draft report,
 United Nations Environment Programme (UNEP).
- Guerrin, J. 2009. Vulnerability assessment of rural groundwater users to global changes: Gajwel
 watershed, Andhra Pradesh, India, Master dissertation in Water Management.
- 623 Gwambene, B., Majule, A. E. 2010. Contribution of tillage practices on adaptation to climate change
- and variability on agricultural productions in semi-arid areas of central Tanzania, 9th European IFSA
- 625 Symposium "Climate change: Agriculture, food security and human health", 4-7 July 2010, Vienna626 (Austria), 1300-1306.
- Ifeanyi-obi, C. C., Etuk, U. R., Jike-wai, O. 2012. Climate change, effects and adaptation strategies;
 Implication for agricultural extension system in Nigeria, GJAS, 2(2), 53-60.
- IPCC (International Pannel on Climate Change). (2001). Climate change 2001. Synthesis Report. A
 Contribution of Working Groups I, II, and III to the Third Assessment Report of the
 Intergovernmental Panel on Climate Change (R.T. Watson and the Core Writing Team, eds.).
 Cambridge University Press, Cambridge, United Kingdom, and New York, USA.
- Jamshidi, R. 2016. Continuity of a decade of drought in stone and water Land, HamshahriNewspaper,
 17 may 2016.
- Jones, L. 2011. Towards a holistic conceptualization of adaptive capacity at the local level: Insights
- from the local adaptive capacity framework (LAC). A paper presented at the 'Building Livelihoods
- 637 Resilience in a Changing Climate' conference, Kuala Lumpur, 3-5th March.

- Kahraman, C., & Kaya, İ. (2009). Fuzzy process accuracy index to evaluate risk assessment of drought
 effects in Turkey. Human and Ecological Risk Assessment, 15(4), 789-810.
- 640 Kalantari, Kh. 2001. Regional planning and development (theories and techniques), Tehran: Khoshbin.
- 641 Kapoor, S. and Ojha, R. K. 2006. Vulnerability in rural areas: potential demand for micro insurance.
- 642 Int. Rural. Manag, 2(1), 64-83.
- 643 Karami, E. 2009. Drought management and the role of knowledge and information. In Proceedings of
- the National Conference on Challenges and Strategies of Drought, Shiraz, Iran, 23–24 May 2009;
 pp. 40–65.
- Knutson, G. L., Blomstedt, M. L., Slaughter, K. 2001. Result of a rapid appraisal study: Agricultural
 producers' perceptions of drought vulnerability and mitigation-Howard County, Nebraska.
- Koochaki, E., Nasiri Mahdi, M., and Kamali, Gh. 2007. Iran Meteorological Indicators in Climate
 Change Conditions, Agron. Res, 5(1), 133-142.
- Kumpulainen, S. 2006. Vulnerability concepts in hazard risk assessment. Natural and technological
 hazards and risks affecting the spatial development of European Region, Geological Survey of
 Filand, 42, 65-74.
- Mabe, F. N., Sarpong, D. B., Osei-Asare, Y. 2012. Adaptive capacity of formers to climate chang
 adaptation strategies and ther effects on rice production in northern region of Ghana. RJOAS, 11(11),
 9-17.
- Maleki, T. 2014. Vulnerability assessment of farmers during drought: Droodfaraman village,
 Kermanshah Township, Master's Degree in Rural Development, Department of Agricultural
 Extension and Education, Razi University of Kermanshah.
- Mckee, T. B., Doesken, N. J., Kleist, J. 1993. The relationship of drought frequency and duration on
 time scales. PP.179-184. In: 8th Conf. on Appl. Climatol. Anaheim, CA.
- Mengistu, D. K. 2011. Farmers perception and knowledge of climate change and their coping strategies
 to the related hazards: Case study from Adiha, central Tigray, Ethiopia. Agric. Sci, 2 (2), 138-145.
- 663 Metzger, M. J., Leemans, R. and Schröter, D. 2004. A multidisciplinary multi-scale framework for
- assessing vulnerability to global change, Millennium ecosystem assessment conference, Alexandria,
- 665 Egypt.

- 666 Multihazard Mitigation Council. 2002. Parameters for an independent study to assess the future benefits
- 667 of Hazard Mitigation Activities. Washington, DC: National Institute of Building Sciences (July),
- 668 69pages. Retrieved from World Wide Web:
- 669 http://www.nibs.org/MMC/images/July%202002%20Phase%20I%20Final%20Report.pdf
- 670 Nalbantis, I. 2008. Evaluation of a hydrological drought index, European Water, 23/24, 67-77.
- 671 Nazari, S., Pezeshki Rad, Gh., Sedighi, H., Azadi, H. 2015. Vulnerability of Wheat farmers: Toward a
- 672 conceptual framework, Ecol. Indic. 52, 517-532.
- Paavola, J. 2008. Livelihood, vulnerability and adaptation to climate change in Morogoro, Tanzania.
 Environmental Science and Policy, 11, 624-654.
- 675 Piya, L., Maharjan, K. L., Joshi, N. P. 2012. Vulnerability of rural households to climate change and
- 676 exteremes: Analysis of Chepang households in the Mid-Hills of Nepal, International Association of
- 677 Agricultural Economists (IAAE) Triennial Conference, Foz do Iguace, Brazil, 18-24 Agust.
- Polsky, C., Neff, R., Yarnal, B. 2007. Building comparable global change vulnerability assessment: The
 vulnerability scoping diagram, Global Environ Chang, 17, 472-485.
- 680 Rajsekhar, D., V. P. Singh, and A. K. Mishra (2015), Integrated drought causality, hazard, and
- 681 vulnerability assessment for future socioeconomic scenarios: An information theory perspective. J.
- 682 Geophys. Res. Atmos., 120, 6346–6378.
- 683 Reed, M.S., Podesta, G., Fazey, I., Geeson, N., Hessel, R., Hubacek, K., Stringer, L.C., Thomas,
- A.D., 2013. Combining analytical frameworks to assess livelihoodvulnerability to climate change
 and analyse adaptation options. Ecol. Econ. 94, 66–77.
- Şen, B., Topcu, S., Türkeş, M., Sen, B., & Warner, J. F. (2012). Projecting climate change, drought
 conditions and crop productivity in Turkey. Climate Research, 52, 175-191
- 688 Sengestam, L. 2009. Division of capitals What role does it play for gender-differentiated vulnerability
 689 to drought in Nicaragua? Community Dev, 40, 154-176.
- 690 Sharafi, L. 2017. Modeling drought early warning system in Kermanshah Township. Ph.D. thesis in
- 691 agricultural development, Department of Agricultural Extension and Education, Razi University of
- 692 Kermanshah.

- 693 Sharafi, L., Zarafshani, K. 2014. Drought management strategies of wheat farmers in Kermanshah,
 694 AgricWater Manag, 1(1), 1-12.
- Sharma, U., Patwardhan, A. 2007. Methodology for identifying vulnerability hotspots to tropical
 cyclone hazard in India, Miting Adapt Start Glob Change, 13, 703-717.
- 697 Shewmake, Sh. 2008. Vulnerability and the impact of climate change in South Africa's Limpopo river698 Basin, International food policy research institute.
- Shisanya, S., Mafongoya, P. 2017. Assessing rural farmers' perceptions and vulnerability to climate
 change in uMzinyathi district of Kwazulu-Natal, South Africa. AFR J AGR RES, 12 (10), 815-828.
- Silva, B. K. N., Lucio, P. S. 2014. Indicator of agriculture vulnerability to climate extremes: A
 conceptual model with case study for the Northeast Brazil. ACS, 4, 334-345.
- Simelton, E., Fraser, E. D. C., Termansen, M., Forster, P. M. Dougill, A. J. 2009. Typologies of cropdrought vulnerability: an empirical analysis of the socio-economic factors that influence the
 sensitivity and resilience to drought of three major food crops in China 1961-2001. Environmental
 Science & policy, 12, 438-452.
- Smit, B., Wandel, J. 2006. Adaptation, adaptive capacity and vulnerability, Global EnvironChang, 16,
 282-292.
- Sönmez, F. K., Kömüşcü, A. Ü., Erkan, A., &Turgu, E. (2005). An analysis of spatial and temporal
 dimension ofdrought vulnerability in Turkey using the standardized precipitation index. Natural
 Hazards, 35(2), 243-264.
- Stenekes, N., Kancans, R., Randall, L., Lawson, K., Reevet, I., Stayner, R. 2012. Revised indicators of
 community vulnerability and adaptive capacity across the Murray-Darling Basin, Australian
 Government Department of Agriculture, Fisheries Forestry, ABARES, p.1-64.
- Thurow, Th. L., Taylor, Ch. A. 1999. Viewpoint: The role of drought in range management. J Range.
 Manag. 52, 413-419.
- Trærup, S. 2007. Coping with climate change vulnerability: issues related to development and
 agricultural linkages in developing countries, Department of Geography and Geology, University of
 Copenhagen. Retrieved from World Wide

- Web:http://www.Diis.dk/graphics/_IO_indsatsomraader/fattigdom_og_naturresurser/P_E_may%2
 027 Tr%E6rup cc
- Vento, J. Ph., Reddy, V. R., Umapathy, D. 2010. Coping with drought in irrigated South India: Farmers'
 adjustments in NagarjunaSagar.Agric Water Manag, 1434-1442.
- Wehbe, M. B., Seiler, R. A., Vinocur, M. R., Eakin, H. Santos, C., Civitaresi, H. M. 2005. Social
- methods for assessing agricultural producers' vulnerability to climate variability and change based
- on the notion of sustainability, AIACC working paper, Retrieved from the World Wide Web:
 http://www.aiaccproject.org.
- Wilhelmi, O. V., Wilhite, D. A. 2002. Assessing vulnerability to agriculture drought: A Nebraska case
 study. Natural Hazards, 25, 37-58.
- Wilhite, D. A., Sivakumar, M. V. K., Pulwarty, R. 2014. Managing drought Risk in a Changing Climate:
 The Role of National Drought Policy. Weather ClimExtrem, 3, 4-13.
- Wilhite, D.A. 2013. Drought management and policy: Changing the paradigm from crisis to riskmanagement. European Water, 60, 181-187.
- 734 Wisner, B. 2001. Vulnerability in disaster theory and practice: From soup to taxonomy, then to Analysis
- and Finally Tool, International work-conference disaster studies of Wagningen University and
- research center. Retrieved from World Wide Web: <u>http://www.fema.gov/impact/chapter2-</u>
 assessment.pdf.
- 738 Wisner, B. 2004. Assessment of capability and vulnerability (Edt.), Bankoff, G., Frerks, G. & Hilhorst,
- D. Mapping Vulnerability: Disasters, Development and People (2004). Earth scan: UK.
- Wolfgang, G., Bollin, Ch. 2001. Disaster risk management: Working concept, the Gesllschaft fur
 TechnischeZusammenarbei (GTZ).
- 742 World Methodological Organization (WMO). 2012. Standardized precipitation index. User Guide.
 743 Chair, Publications Board.
- 744 Xiaoqian, L., Yanglin, W., Jian, P., Ademola, K., He, Y. 2013. Assessing vulnerability to drought based
- on exposure, sensitivity and adaptive capacity: A case study in Middle Inner Mongolia of China.
- 746 China Geogr Sci. 23, 1, 13–25.

- Zarafshani, K., Maleki, T., Keshavarz, M. 2019. Assessing the vulnerability of farm families towards
 drought in Kermanshah province, Iran. GeoJournal, DOI 10.1007/s10708-019-09994-0, 1-14.
- 749 Zarafshani, K., Sharafi, L., Azadi, H., Hosseininia, Gh., De Maeyer, Ph., Witlox, F. 2012. Drought
- vulnerability assessment: The case of Wheat farmers in Western Iran. Global Planet Change, 98-99,
- 751 122-130.
- Zarafshani, K., Sharafi, L., Azadi, H., Van Passel, S. 2016. Vulnerability assessment models to drought:
 Toward a conceptual framework. Sustainability, 8 (6), 588.
- Zarei, M., Kazemini, S. E., Bahrani, M. J. 2014. Effect of tillage systems and water stress on wheat
 growth and yield. Iranian Crop Research, 12(4), 793-804.
- 756 Zhang, J. 2004. Risk assessment of drought disaster in the maize-growing region of Songliao Plain,
- 757 China. AgricEcosyst Environ, 102, 133–153.
- Zhao, H., Xu, Z., Zhao, J., Huang, W. 2017. A drought rarity and evapotranspiration-based index as a
 suitable agricultural drought indicator. Ecol. Indic, 82, 530-538.