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Fundamentals of Focal Series Inline Electron Holography
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Technische Universität Dresden, 01062 Dresden, Germany

L. Clark, G. Guzzinati, and J. Verbeeck
EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium

The loss of the quantum phase information in the measurement process constitutes a fundamental
limitation to transmission electron microscopy as the electron wave’s phase often contains valuable
information about the studied specimen. Phase retrieval from focal series is a holographic technique
that seeks to recover the lost information from a set of images recorded at different defoci. In
spite of its widespread use, in particular for wave reconstruction at atomic resolution, a number of
fundamental properties, e.g., regarding the conditions for a unique wave function reconstruction,
the magnitude of the reconstruction error and the influence of inconsistencies or incomplete data
are not well-understood as of today. Here, we elaborate on the fundamentals of the technique,
making extensive use of the tomographic representation of a focal series as tilt series in phase space.
Using this perspective we discuss, among others, requirements on the focal series for a unique
reconstruction, such a the focus interval ranging from the far field at underfocus to the far field at
overfocus or the focus step size. We reveal that the prominent Gerchberg-Saxton iterative projection
algorithm corresponds to a numerical integration of the quantum Hamilton-Jacobi equation in the
small focus step limit. Moreover, we show that the topology of the starting guess divides the solution
space of the Gerchberg-Saxton algorithm into equivalence classes, which mitigates the impact of
the incompleteness of typical focal series data. To facilitate a focal series reconstruction meeting
the above theoretical requirements such as the long range focus interval, we develop a dedicated
calibration procedure facilitating the determination of unknown electron optical parameters such
as the focal length of the principal imaging lens or the position of object and image planes. The
findings are demonstrated with an example of a focal series reconstruction of an electron vortex
beam.
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I. INTRODUCTION

Focal series wave reconstruction in the Transmission
Electron Microscope (TEM) is a well-established holo-

graphic technique for mapping electric, magnetic and
strain fields (Dietrich et al. 2014, Koch et al. 2010, Song
et al. 2013) in solids with nanometer resolution and for
studying atomic configurations at crystal defects or grain
boundaries (Allen et al. 2004, Koch 2014, Thust et al.
1996). More recently, also the structure of phase vor-
tices at caustics has been explored using the technique
(Petersen et al. 2013). The schematic optical setup, de-
picted in Figure 1, is an extension of Gabor’s original in-
line holography (Gabor 1948), which used only one out-
of-focus image for the reconstruction of the wave func-
tion. Focal series reconstruction does not require an
undisturbed reference wave and a biprism like off-axis
holography, hence may be carried out at practically every
TEM. Furthermore, it may be conducted under relaxed
partial coherence provided that the latter is well-behaved
and well-known in advance (Koch 2008). Moreover, fo-
cal series holography possesses an intriguing connection
to quantum state tomography (Lubk and Röder 2015), a
technique that is successfully employed to study mixed
(i.e., incoherent) quantum states of matter (e.g., atoms)
and light (Breitenbach et al. 1997, Schleich 2001, Smithey
et al. 1993).

These advantages are opposed by ambiguities in the re-
constructed wave function (Fienup and Wackerman 1986,
Luke et al. 2002), e.g., due to inconsistent and incom-
plete focal series data. Under experimental conditions
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every focal series is inconsistent due to the presence of
partial coherence (e.g., from the electron gun, inelastic
interaction and thermal diffuse scattering (Rother et al.
2009)) or shot and detector noise (Niermann et al. 2012)
as well as geometric and chromatic aberrations depend-
ing on the defocus. Similarly, every focal series is in-
complete because of a limited number and range of de-
focus values, typically limited to the near field regime,
and the restriction to isotropic foci, whereas astigmatic
foci are required for an unambiguous reconstruction of
a wave function (Lubk and Röder 2015). For instance,
the problematic reconstruction of low spatial frequencies
(Niermann and Lehmann 2016, Ophus and Ewalds 2012,
Thust et al. 1996) can be traced back to missing focal
series data in the far field.

The design of reconstruction algorithms behaving well
in the presence of inconsistent and incomplete data in-
cluding their characterization in terms of reconstruction
errors is highly non-trivial and subject to large and on-
going efforts. Moreover, the accurate calibration of cru-
cial experimental parameters such as the precise defo-
cus values or aberrations and distortions in the series
remain challenging. Thus, in spite of the relative ex-
perimental convenience of this technique, the majority
of quantitative electric, magnetic and strain field studies
are conducted by means of off-axis electron holography
(see (Dunin-Borkowski et al. 2004, Kasama et al. 2011,
Lichte et al. 2013, McCartney et al. 2010, Pozzi et al.
2014, Tonomura 1987, Völkl et al. 1999) and references
therein), which has a less problematic linear and unique
reconstruction procedure including well-defined error es-
timates (Lenz 1988, Röder et al. 2014).

In the following, we elaborate on analyzing focal se-
ries reconstruction from the perspective of quantum
state tomography and use the obtained results to in-
crease the scope of the technique in terms of convergence
and uniqueness in particular for low spatial frequencies.
Moreover, we are able to explain a number of previous
results by exploiting the phase space analogy, and open
pathways to further improvements.

The history of focal series reconstructions goes back
to the first half of the 20th century, when Pauli raised
the question, whether the amplitude of a complex (wave)
function and of its Fourier transform completely define
the underlying function (Pauli 1933). This phase re-
trieval problem can be considered as one particular in-
stance of a reconstruction from a focal series consist-
ing only of one in-focus and one far-field image. In the
wake of finding whole classes of functions (up to constant
phase factors) sharing the same amplitude both in posi-
tion space and Fourier space (Jaming 2014, Luke et al.
2002), the prospects of such reconstructions have been
considered rather pessimistic. For instance, if the Fourier
transforms are symmetric F {Ψ} (k) = F {Ψ} (−k), the
corresponding amplitudes are invariant under complex

objective lens

sample

condenser

source

acquisition
planes

f

image plane

Figure 1. Principle optical setup of focal series inline hologra-
phy. Accordingly, the defocus interval is ideally bounded by
the far field located below (i.e., in focal plane f) and above
the image plane.

conjugation, i.e.,

|Ψ (x)| = |Ψ∗ (x)| (1)
|F {Ψ} (k)| = |F {Ψ∗} (k)| .

In a seminal paper Gerchberg and Saxton, however,
proposed a simple iterative projection algorithm, which
produces surprisingly sensible wave reconstruction from
two-dimensional image and diffraction intensities (Ger-
chberg and Saxton 1972). Subsequently, modifications
and extension of the original Gerchberg-Saxton algorithm
(Boucher 1980, Cederquist et al. 1989, Combettes and
Trussell 1990, Dong et al. 1997, Fienup 1982, Gonsalves
1976, Levi and Stark 1984, Misell 1973, Ohneda et al.
2001, Quatieri and Oppenheim 1981, Stark and Sezan
1994, Takajo et al. 2002, Yang et al. 1994, Zou and Un-
behauen 1997) have been successfully applied in a large
number of different fields ranging from measuring the
aberrations of telescopes (Baba and Mutoh 2001, Fienup
et al. 1993, Lyon et al. 1997) to phase retrieval in elec-
tron microscopy (Allen et al. 2004, Allen and Oxley 2001,
Koch 2008, 2014). It is interesting to note that in par-
ticular the unfortunate initial manufacturing error of the
Hubble space telescope’s optics (Burrows et al. 1991) and
its subsequent characterization (Burrows 1991, Fienup
et al. 1993, Lyon et al. 1997, 1991) lead to a boost in re-
search on wave front reconstruction algorithms and their
properties, which exhibits a remarkable parallel to Ga-
bor’s invention of holography that had been stimulated
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by the search for aberration corrected electron optics in
the TEM (Gabor 1948).

Fienup established the connection between the
Gerchberg-Saxton algorithm (Gerchberg and Saxton
1972) and line-search methods. Indeed, the Gerchberg-
Saxton algorithm is closely related to the discipline of
convex optimization (Bauschke et al. 2002, Levi and
Stark 1984), where similar algorithms, referred to as pro-
jection on convex sets or alternating projections, are em-
ployed. Within the convex setting, these algorithms are
well-behaved and well-understood in their convergence
behaviour. However, the Gerchberg-Saxton algorithm
operates on non-convex sets, as will be discussed below.
Thus, there remain a number of properties, which re-
main not well understood till today, in spite of the large
progress made in the field of focal series reconstructions.
For instance, the theoretical results on the convergence
of convex projection algorithms do not apply to the prob-
lem of phase retrieval from focal series (Combettes 1996,
Luke et al. 2002, Seldin and Fienup 1990), resulting in
stalling iterations or reconstruction artifacts. Therefore,
a large number of studies has been concerned with the
investigation of constraints on the reconstructed function
space narrowing the number of potential solutions (e.g„
pertaining to a different starting guess in the Gerchberg-
Saxton algorithm), such as limited supports in position
or Fourier space (Hayes et al. 1980, Marchesini et al.
2015) or the analyticity of the wave function (Huiser et al.
1976, Huiser and Ferwerda 1976, Huiser et al. 1977). Im-
portant aspects of these studies are whether the studied
constraints are applicable to the experimental situation
(e.g., taking into account inconsistent (noisy) data) and
how these constraints can be implemented in actual re-
construction algorithms.

A particularly useful perspective is provided by lift-
ing the phase retrieval problem into quantum mechani-
cal phase space, where it corresponds to a matrix com-
pletion problem in the discrete setting (Candès et al.
2013), because the sets possessing the same image in-
tensity are convex in phase space. Moreover, it is well
understood that a focal series corresponds to a tilt series
in quantum mechanical phase space (Lubk and Röder
2015, Raymer et al. 1994). Thus, the focal series re-
construction translates to a tomographic reconstruction
of the underlying phase space distribution. In the fol-
lowing we explore this analogy and its manifold conse-
quences for the Gerchberg-Saxton type reconstruction al-
gorithms. Most importantly, we will show that the focal
range needs to extend over both near and far field to
facilitate a unique reconstruction. We implement such
a long-range focal series reconstruction using a variant
of the Landweber iteration, well-known from (quantum
state) tomography (Natterer and Wübbeling 2001). The
significance of the large focal range for a unique recon-
struction is also proven by showing that the Gerchberg-
Saxton algorithm is closely related to the numerical inte-
gration of the quantum Hamilton-Jacobi equation. More-
over, we discuss several boundary conditions narrowing

the under-determined focal series reconstruction from a
limited number of isotropic defocused images, such as
topology or regularity constraints.

This article is organized as follows. We begin with a
brief discussion of imaging with a thin lens, both wave
optically as well as in the phase space setting, thereby
providing the basis for the subsequent focal series recon-
structions. We proceed with discussing some crucial ex-
perimental aspects pertaining to the recording of a long
range focal series. Subsequently, we elaborate on the
Gerchberg-Saxton reconstruction algorithm. Finally, we
perform a case study using a higher-order electron vorex
beam, not in the least because this topic has garnered
much interest and development in the recent years. Such
beams possess a non-trivial topology by design, and are
therefore nicely suited to discuss the crucial impact of
(implicit) topology constraints. The phase retrieval of
such waves has proved elusive because of missing undis-
turbed plane references for off-axis holography or non-
trivial boundary conditions in direct reconstruction tech-
niques such as the Transport of Intensity (TIE) phase
retrieval (Lubk et al. 2013b, Teague 1983).

II. THIN LENS IMAGING

We begin with introducing one particular representa-
tion of quantum mechanical phase space - the Wigner
function, which is computed from a wave function Ψ (a
state vector) according to the following definition (e.g.
(Schleich 2001))

W (r, k) :=
1

2π

ˆ ∞

−∞
Ψ∗
(
r − 1

2
r′
)

Ψ

(
r +

1

2
r′
)
e−ikr

′
dr′

(2)

=
1

2π

ˆ ∞

−∞
Ψ∗
(
k − 1

2
k′
)

Ψ

(
k +

1

2
k′
)
eik
′rdk′ ,

where the normalization factor 1/ (2π) ensures
ˆ ∞

−∞
dr

ˆ ∞

−∞
dkW (r, k) = 1 . (3)

It is important to note that the above definition is just a
special case of the more general

W (r, k) :=
1

2π

ˆ ∞

−∞
dr′ρ

(
r +

1

2
r′, r − 1

2
r′
)
e−ikr

′
, (4)

where any mixed quantum state (i.e., incoherent superpo-
sition of pure state wave functions) represented by some
density matrix

ρ

(
r +

1

2
r′, r − 1

2
r′
)

=
∑
n

Ψ∗n

(
r − 1

2
r′
)

Ψn

(
r +

1

2
r′
)
(5)

is allowed. The parameter space (r, k) of the Wigner
function defines a quantum mechanical phase space, with
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Figure 2. A Wigner function and its marginal densities.

coordinate k being the momentum coordinate. The two
dimensional version required for electron optics follows
in a straightforward manner by replacing the phase space
coordinates r and k with 2D vectors r and k.

The definition (2) implies that the Wigner function
is strictly real. Projecting the Wigner function along k

yields a strictly positive quantity, which can be identified
as the quantum mechanical density in position space

ρ (r) =

ˆ ∞

−∞
W (r, k) dk . (6)

The same holds for Fourier space, i.e.,

ρ (k) =

ˆ ∞

−∞
W (r, k) dr . (7)

The latter projection along r could be alternatively un-
derstood as a rotation of phase space around 90° with a
subsequent projection along the vertical axis (Figure 2).
The generalization of this concept to arbitrary tilt angles
leads to the notion of fractional Fourier transforms (e.g.,
(Almeida 1994, Ozaktas and Mendlovic 1995)), which is
closely related to the free space propagation in the parax-
ial regime (Fresnel propagation) discussed subsequently.

In the following, we only require the behaviour of the
Wigner function under free space propagation. Within
the paraxial regime it may be obtained by applying the
Fresnel propagator to the wave function (propagation
length z, wave number k0) and inserting the propagated
wave function in the above definition

Wδz(r,k) =
1

4π2

ˆ ∞

−∞
d2k′ei

δz
2k0

(k− 1
2k
′)

2

Ψ∗
(
k− 1

2
k′
)

Ψ

(
k +

1

2
k′
)
e−i

δz
2k0

(k+ 1
2k
′)

2

eik
′r (8)

=
1

4π2

ˆ ∞

−∞
d2k′Ψ∗

(
k− 1

2
k′
)

Ψ

(
k +

1

2
k′
)
e
ik′
(
r− δzk0

k
)

= W0(r− δz

k0
k,k) .

This result, also holding for mixed states, exhibits a re-
markable simplicity. The paraxially propagated Wigner
function is merely a sheared version of its initial state
W0, which is exactly the behaviour of a classical phase
space ensemble of particles with position r and momen-
tum k. In other words, the quantum nature of the sys-
tem is solely encoded in the underlying Wigner quasi-
probability distribution.

It is now crucial that one may transform this shear into
a rotation by suitably shearing (along k) and rescaling
the propagated Wigner function. Note that these trans-
formations do not affect the projections along k, i.e., the
recorded intensities. Indeed, a focal series is nothing else
then a scaled series of intensities of freely propagated
waves (see below), and we may conclude that a focal se-
ries reconstruction corresponds to a tomographic recon-
struction of the Wigner function, referred to as quantum
state tomography (Raymer et al. 1994) (Figure 3). Be-
cause the Wigner function describes both pure quantum
states (i.e., wave function) and mixed quantum states,

this is not just a mere reformulation of focal series phase
retrieval of wave functions in phase space. Indeed, quan-
tum state tomography may be employed to reconstruct
quantum states of any coherence and the restriction to
wave functions (pure states) is given by constraining the
phase space volume of the quantum state according to

4π2

¨ ∞

−∞
d2rd2kW 2 (r,k) = 1 . (9)

Because the latter integral constraint only marginally re-
duces the infinitely-dimensional space of quantum states
by one dimension, important properties of phase space
tomography, e.g., pertaining to the required focal range,
may be directly transferred to focal series reconstruc-
tion of wave functions, where they are much less obvi-
ous. Most importantly, the 180° tilt range required for a
unique phase space reconstruction translates into a focus
interval ranging from the far field at underfocus via the
in-focus plane to the far field at overfocus. It is further-
more readily verified in phase space that both far fields



5

underfocus
sh

ea
r

se
ri

es

r

k
in focus

defocus

overfocus
ti

lt
se

ri
es

rs

ks

far field ∼= −90◦

defocus

far field ∼= 90◦

Figure 3. Inline holography as quantum state reconstruction.
The shear series of the defocused Wigner function is shown
in the first row. The corresponding tilt series obtained by
suitably scaling the phase space is depicted in the second row.

(at over- and underfocus) may be identified by inverting
the spatial coordinates.

As we are dealing with a four-dimensional phase space

in general, the projection geometry is more complicated
than the simple single-tilt-axis geometry (where the set
of projections is referred to as Radon transform) typically
considered in tomography (including two-dimensional
phase space tomography). In particular, each individ-
ual defocused image is obtained by projecting along a
2D plane in phase space, tilted by the defocus. Such
a projection transformation represents a generalization
of the 2D Radon transformation, referred to as K-plane
transform K4

2 (e.g., (Keinert 1989)), if the projections
are performed over all 2D planes in 4D phase space. To
realize arbitrary shears in 4D phase space electron opti-
cally, line defoci (where one direction remains in focus)
with varying orientation have to be realized.

We will now discuss the scaling of the focal series,
i.e., the relation between free space propagation and the
experimental images in the series, for imaging with a
thin lens. The thick lens case, required further below,
is treated in Appendix A. Following Abbe, the object,
back focal plane and image plane of a single lens are con-
nected in an ideal (aberration-free) system wave optically
by means of a Fourier and an inverse Fourier transforma-
tion, respectively. This result may be derived by propa-
gating a wave given at some object distance zobj through
a thin lens with focal length f (see Figure 4)

Ψ (r, z) =
1

8π3

˚ ∞

−∞
d2r′d2k′d2kΨ̃ (k′, zobj) e

−i
zobj
2k0

k′2ei(k
′−k)r′e−i

k0
2f r
′2
e−i

z
2k0

k2

eikr (10)

=
f

4π2ik0

¨ ∞

−∞
d2kd2k′Ψ̃ (k′, zobj) e

−i
zobj
2k0

k′2ei
f

2k0
(k−k′)

2

e−i
z

2k0
k2

eikr

=
f

2π (f − z)
e−i

k0
2(f−z) r

2
ˆ ∞

−∞
d2k′e

i
2k0

zobjz − f (zobj + z)

f − z︸ ︷︷ ︸
δz(z)

k′2

Ψ̃ (k′, zobj) e

i
f

f − z︸ ︷︷ ︸
M−1

rk′

=
ik0
Mδz

e−i
k0
2M ( 1

f+
1
δz )r2

F−1
{

Ψ (r, 0) e−i
k0
2δz r

2
}( k0

Mz
r

)
.

In the second transformation we defined an effective de-
focus δz, i.e., the corresponding propagation length in
free space, and a magnification M , describing the rescal-
ing with respect to a freely propagated wave. Inserting
the wave function propagating through a thin lens into
the definition of the Wigner function (2) and taking into
account (8), we obtain a succession of shears along the
position and the momentum coordinate in phase space
as depicted in Figure 4. Again, this shear series may be
transformed into a tilt series by suitably rescaling phase
space.

It follows that the diffraction pattern ρ =
∣∣∣Ψ̃∣∣∣2 occurs

in the back focal plane (z = f) because (starting from

the second line in Eq. (10))

Ψ (r, f) =
f

i4π2k0

ˆ ∞

−∞
d2k′ei

f−zobj
2k0

k′2Ψ̃ (k′, zobj) (11)

×
(
ˆ ∞

−∞
d2ke

i
(
r− f

k0
k′
)
k
)

=
f

ik0

ˆ ∞

−∞
d2k′δ

(
r− f

k0
k′
)
ei
f−zobj

2k0
k′2Ψ̃ (k′, zobj)

=
1

i
e
i
k0(f−zobj)

2f2 r2

Ψ̃

(
k0
f
r, zobj

)
.

Eq. (10) indicates three ways to change the effective
defocus δz (facilitating a focal series) by varying zobj, f
or zimg, respectively. However, the object plane (i.e., the
specimen or some conjugated plane) and the image plane
(i.e., the detector plane or some conjugated plane) remain
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Figure 4. Imaging at a thin lens in phase space. Accordingly,
the initial rectangular phase space distribution in the object
plane (a) passes through several (affine) shear transformations
(b)-(d) yielding a 180° rotated and, along the momentum co-
ordinate, sheared version in the image plane (e).

fixed in a typical TEM. Thus, using a single lens, focal
series are usually recorded by varying the lens excitation,
hence f . It is important to note that by varying the
focal length f not only in the effective defocus δz but
also in the magnification M changes. This rescaling has
to be taken into account, when reconstructing the wave
function from an experimental focal series. An accurate
calibration of the focal series in terms of defocus and
magnification are absolutely crucial therefore. This is a
serious challenge and we present a dedicated calibration
procedure adapted to the above focal series recorded with
the diffraction lens later on.

III. EXPERIMENTAL IMPLEMENTATION

As of today, the recording of a focal series ranging
from the far field at underfocus via the focal plane to
the far field at overfocus that is free from additional
modifications such as magnification changes, rotations,
distortions or incoherent aberrations represents a serious
challenge. Several authors noted the importance of tak-
ing into account these imaging errors in the focal series
reconstruction (Koch 2014, Meyer et al. 2004, 2002).

To mitigate some of the noted obstacles, we focus on
medium resolution focal series in the following. This al-
lows us to use a low magnification mode, where the fo-
cal series is facilitated by changing the excitation of the
diffraction lens (Figure 5). In a first step we will treat

electron source

1st condenser lens

2nd condenser lens
with aperture

upper objective lens

lower objective lens

diffraction lens

projector lens(es)

object
plane

near
field

back-focal
plane

far
field

objective aperture

1st image
plane selected area aperture

detector plane

Figure 5. Conventional bright field TEM (CTEM) scheme
with the electron source located in the far field (Fourier plane)
of the object plane, which in turn is conjugated to the detector
plane. Conjugated object planes are indicated by arrows. The
medium resolution focal series considered here was recorded
by varying the diffraction lens (highlighted) within the low
magnification mode of the TEM.

the diffraction lens as a weak (thin) magnetic lens, which
greatly simplifies the optics and the derivation of the per-
tinent equations linking the change of the lens excitation
at the microscope with an actual defocus. Based on that,
we discuss the crucial calibration of the focal series even-
tually also considering thick lenses. We illustrate the
various steps at the example of a Philips CM200 TEM
operated at 200 kV.

A. Weak Magnetic Lens Approximation

In order to calibrate the focal length as well as the
object and image plane coordinates, we shall start with
the weak lens approximation before discussing a more
realistic optical model. For a thin lens the focal lengths
and focal planes coincide and the principal planes fall
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into the symmetry plane of the lens. The focal length
of a thin round magnetic lens is given by the integral
of the squared magnetic induction along the optical axis
(Hawkes 2013)

1

f
=

e

8meU∗

ˆ ∞

−∞
B2
z (z) dz (12)

with the relativistically corrected acceleration voltage
given by

U∗ = U

(
1 +

eU

mec2

)
. (13)

Similarly, the image rotation ϕ is given by the integral of
the induction

ϕ =
e

2mev

ˆ ∞

−∞
Bzdz (14)

with the electron velocity denoted by v.
To evaluate the above integrals, we need to know the

magnetic induction inside of the diffraction lens. In
the absence of accurate magnetic field configurations
from the manufacturer, we employ the GRAY model
(α = 2.636) for the magnetic induction in the pole piece
(diameter D, gap S)

Bz (z) =
µ0I

2S

(
tanh

(
αS

2D

(
1 + 2

z

S

))
(15)

+ tanh

(
αS

2D

(
1− 2

z

S

)))
,

which provides a rather accurate approximation for
weakly excited round magnetic lenses (Hawkes 2013). In
the GRAY model the inverse focal length is proportional
to the squared lens excitation (lens current I in Ampere-
turns) with the proportionality constant Cf

1

f
=

eµ2
0

8meU∗2S

(
1 + tanh2

(
αS
2D

)
2 tanh

(
αS
2D

) − D

αS

)
I2 = CfI

2 .

(16)
Thus, we only have to determine Cf in our calibration
procedure in order to know the focal length f as a func-
tion of the lens excitation. The image rotation on the
other hand is linearly proportional to I according to

ϕ =
eµ0I

2mev
. (17)

We use this dependency to calibrate the excitation
strength displayed by the TEM control interface in terms
of Ampere-turns by measuring the image rotation at dif-
ferent excitation strengths and solving Eq. (17) for I.
Figure 6 exhibits the linear increase of the image rota-
tion with the lens current in the diffraction lens at our
Philips CM200 TEM operated at 200 kV. Accordingly,
at 100% excitation strength the current amounts to 4904
Ampere-turns.

1962 2942 3924 4904

diffraction lens current [A-turns]
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[◦
]

Figure 6. Image rotation as a function of the diffraction lens
excitation. Note the linear increase in agreement with Eq.
(17).

B. Calibration of Focal Series

The principal part of the calibration procedure consists
of three measurements. First, we record two in-focus im-
ages of a Selected Area (SA) aperture (radius 50 µm) and
a copper grid in the object plane (objective lens switched
off) of known size and determine their respective magni-
ficationsM1,2. These magnifications are composed of the
post-magnification of the projector lenses and the actual
magnification of the Dif lens according to

M1,2 = MprojM
(1,2)
dif (18)

= Mproj
f1,2 − zimg

f1,2

= Mproj

(
1− CfI21,2zimg

)
,

which can be solved for

Cfzimg =
M1 −M2

M1I22 −M2I21
(19)

and the post-magnification of the projector lenses

Mproj =
M1,2

1− CfI21,2zimg
. (20)

To calibrate the remaining unknown optical parame-
ters, namely Cf , zimg and zobj, we record a reference
focal series of a small grating (lattice constant d = 100
nm, objective lens switched off) because the correspond-
ing large far field permits the following approximation for
a large range of lens excitations

Ψ (r, z) =
1

2πM
e−i

k0
2(f−z) r

2

(21)

×
ˆ

d2k′e
i

2k0
δzk′2Ψ̃ (k′, zobj) e

iM−1rk′

SPA∼ Ψ̃

(
k0
Mδz

r, zobj

)
.
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Figure 7. Distance between systematic reflections as a func-
tion of the lens excitation

In the last line we used the stationary phase approxima-
tion (SPA) assuming an effective defocus large enough to
be in the far field of the grating. Consequently, tracking
the difference s = rn− rn−1 between adjacent diffraction
orders (q = 2πn/d)

s = Mproj
λ

d

(
zobjzimg − f (zimg + zobj)

f

)
(22)

= Mproj
λ

d

(
zobjzimgCfI

2 − zimg − zobj
)

= Mproj
λ

d

(
zobj

M1 −M2

M1I22 −M2I21
I2 − zimg − zobj

)
permits the fitting of the unknown parameters zobj and
zimg. Figure 7 shows the dependency of the distance s
to the lens excitation I. Accordingly, we obtain a good
agreement with the predicted quadratic behaviour for
weak lens excitation only. Combining (22), (19) and (20)
we can compute Cf and finally the effective defocus

δz (I) =
zobjzimg − f (I) (zobj + zimg)

f (I)− zimg
(23)

and magnification

M (I) =
f (I)− zimg

f (I)
(24)

within a long-range focal series recorded by varying the
excitation of the diffraction lens.

Figure 7 exhibits that the propagation of the wave
within the magnetic field of the lens, i.e., thick lens ef-
fects, cannot be neglected anymore for higher excitations.
In Appendix A we thus consider the propagation through
a thick lens modeled as a sum of two refracting surfaces
at a distance

D (I) = CDI (25)

depending linearly on the lens current, and derive the cor-
responding quantities measured in the above calibration

parameter value

zO 18.3 cm

zSA 3.6 cm

zimg 47.3 cm

CD 7.9µm/A

Cf 2.8 (mA)−2 /m

Mproj 88

Table I. Table of optical parameters of the diffraction lens in
a Philips CM200 TEM operated in a low magnification mode.
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Figure 8. Focal length calibrated from the calibration experi-
ments using the thick lens model for the fitting of the optical
parameters.

experiments (see Tab. I). Such a thick lens model yields
very good agreement for the distance between the diffrac-
tion orders as a function of the lens excitation (see Fig-
ure 7 ). The calibrated optical parameters of our Philips
CM200 TEM are in the expected range although estima-
tions of the distance between diffraction lens and object
plane suggest an error in the range of 20%. The latter
translates to a deviation between the predicted and the
experimentally observed position of the in-focus plane in
the actual focal series, which has to be taken into account
the when discussing the reconstruction results.

We conclude that the characterization of the optical
system and hence the parameters of the focal series ob-
tained from the above procedure necessarily represent
an approximation because of several assumptions, which
might be violated to some extent in reality. For instance,
the quadratic dependency of the reciprocal focus and the
linear dependency of the thickness of the lens from the
lens current (16,25) are expected to break down at higher
excitations. Similarly, very weak excitations may be af-
fected by hysteresis effects, disturbing the proportional-
ity between I2 and f−1 as the lens is operated outside of
its typical regime. More precise models, however, would
require ray tracing simulations within realistic magnetic
fields based on the exact geometry of the lenses.
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Figure 9. Effective defocus and magnification calibrated from
the calibration experiments using the thick lens model for the
fitting of the optical parameters.

To account for the inaccurate calibration, we there-
fore implement a self-consistent adaption of the effective
magnification in the focal series reconstruction, similarly
to (Koch 2014). Note, however, that such a procedure
might also modify the reconstructed wave function and
should be only employed to correct for calibration er-
rors. Alternatively, it is possible to fit the effective defo-
cus and magnification by comparing a reference series of
some well-defined beam shape (e.g., plane wave through
a round aperture) to a simulation.

C. Numerical Propagation Algorithms

When performing a focal series reconstruction from
data covering both the near and the far field the two
regimes must be treated separately numerically to avoid a
spread of the image beyond the simulated domain, while
maintaining both a sufficient accuracy and speed in the
numerical Fresnel propagation. In the near field regime,
the numerical Fresnel propagation is performed in Fourier
space exploiting both the small slope of the quadratic
Fresnel phase (i.e., slow spreading) and the speed of the
Fast Fourier transform:

Ψ (r, z) = F−1
{
ei

z
2k0

k2

F {Ψ (r, 0)}
}
. (26)

When entering the far field regime (characterized by the
Fresnel number F = a2/ (λz) � 1 with a the extent of
the wave function), the reconstruction algorithm directly
evaluates the convolution with the position space Fresnel
propagator according to (García et al. 1996)

Ψ (r, z) =
1

iλz
ei
k0
2z r

2

ˆ ∞

−∞
Ψ (r′, 0) ei

k0
2z r
′2
e−i

k0
z rr′d2r′(27)

=
2π

iλz
ei
k0
2z r

2

F
{

Ψ (r, 0) ei
k0
2z r

2
}(k0

z
r

)
.

By separating the different r and r′ dependencies we can
use Fast Fourier transformations for efficiently comput-
ing the above convolution. Note, however, that the latter

implicitly rescales the defocused wave function by k0/z,
counteracting the spread upon free propagation. As the
rescaling is generally different from the spread of the wave
function, the sampling has to be chosen carefully to en-
sure an adequate scaling. In order to facilitate a matching
scale between experimentally recorded images and sim-
ulated ones, both the near field and the far field wave
functions computed by means of (26) and (27) need to
be rescaled with M to fit to the experimental intensity
recorded in the corresponding plane.

IV. LONG RANGE FOCAL SERIES
RECONSTRUCTION

In the following, we consider the focal series wave re-
construction as a quantum state tomography restricted
to pure states (i.e., wave functions). Note, however, that
a certain violation of the pure state assumption, e.g.,
due to inelastic scattering at the sample, the partial co-
herence of the electron emitter, or the point spread of
the detector (Niermann et al. 2012), can never be com-
pletely avoided, and must therefore be taken into account
therefore (Martin et al. 2006).

In a hardware-corrected TEM or at medium (nanome-
ter) resolution the defocus remains as the main source
of aberrations. Thereby, we assume that the effects of
temporal incoherence may be sufficiently suppressed due
to chromatic aberration correction and energy filtering.
In order to compute the impact of a finite source size
on the Wigner function in the presence of defocus only,
it suffices to incoherently sum the underlying coherent
Wigner function over the transverse momentum distribu-
tion of the source ρS (k)(∼=effective source size) to obtain
the corresponding mixed quantum state

W (r,k) =

ˆ ∞

−∞
W (coh)(r,k− k′)ρS (k′) d2k′ , (28)

which is defocused in a second step

W (r,k, z) = W (r− z

k0
k,k, 0) (29)

=

ˆ ∞

−∞
W (coh)(r− z

k0
k,k− k′, 0)ρS (k′) d2k′ .

This convolution commutes with the projection of the
Wigner function along the momentum coordinate (i.e.,
the measurement) according to

ρ (r, z) =

ˆ ∞

−∞
W (r,k, z)d2k (30)

=

¨ ∞

−∞
W (coh)(r− z

k0
k,k− k′, 0)ρS (k′) d2kd2k′

=

ˆ ∞

−∞
ρ(coh)(r− z

k0
k′, 0)ρS (k′) d2k′ ,

hence can be inverted (deconvoluted) to a certain extent
directly in the recorded image within the limits deter-
mined by noise (Koch 2008, Lubk and Röder 2015). From
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Figure 10. Impact of partial spatial coherence in combination
with defocus on the average mixed quantum state. Spatial
incoherence in combination with a defocus leads to a convo-
lution in phase space, which may be deconvolved from the
recorded image therefore.

a phase space perspective, such a deconvolution corre-
sponds to a purification of the quantum state, as the
partial trace over a subspace of the total configuration
space (i.e., the incoherent emitter surface) is reverted.

Because of its particular link to fundamental laws of
quantum mechanics and its preeminent practical signif-
icance, we focus in the following on the archetypical re-
construction algorithm in the field, the Gerchberg-Saxton
algorithm. The latter consists of propagating a trial wave
function into the various experimental focal planes, where
its modulus is iteratively updated to the experimental
value. In the limit of an infinitesimally small focal step
size, we may derive the following analytical description
of this iterative procedure. We start be writing down the

paraxial Klein-Gordon equation in field-free space

i∂zΨ(r, z) = − 1

2k0
∆Ψ(r, z) , (31)

which adequately describes the propagation of an elec-
tron beam of wave vector k0 along the optical axis z
in the TEM. The structure of this equation corresponds
to a two-dimensional time-dependent Schrödinger equa-
tion with z taking the place of the time coordinate. In
full analogy to the time-dependent Schrödinger equa-
tion one can rewrite (31) as a coupled system of two
differential equations for the wave’s probability density
ρ = ΨΨ∗ = A2 and the phase ϕ

∂ρ(r, z)

∂z
= − 1

k0
∇(ρ(r, z)∇ϕ(r, z))︸ ︷︷ ︸

j

(32)

∂ϕ(r, z)

∂z
= − 1

2k0
(∇ϕ(r, z))

2
+

1

2k0

4A(r, z)

A(r, z)︸ ︷︷ ︸
quantumpotential

. (33)

The first line equates the change of the probability den-
sity (or intensity) along z with the lateral divergence of
the probability current j. Consequently, it represents the
continuity equation for the paraxial regime. In the con-
text of the corresponding holographic technique (Lubk
et al. 2013b, Teague 1983), Eq. (32) is also referred to as
Transport of Intensity Equation (TIE). The second equa-
tion is the quantum version of the paraxial Hamilton-
Jacobi equation (QHJE) differing from the classical one
by the so-called quantum potential.

If we now start the Gerchberg-Saxton iteration with
a deliberately chosen guess for the phase Ψ0 (z = 0) =√
ρ (r, 0) exp (iϕ0(r, 0)) at the initial plane z = 0, the

propagation over an infinitesimal small defocus step δz
at some point z = nδz along the optical axis reads

Ψn(r, z + δz) =

(
1 +

iδz

2k0
∆

)
Ψn(r, z) (34)

=

(
1− δz

2k0

(
∇A(r, z)∇ϕn(r, z)

A(r, z)
− i∆A(r, z)

A(r, z)
+ i (∇ϕn(r, z))

2

))
A(r, z)eiϕn(r,z)

= e−
δz

2k0
(∇A(r,z)∇ϕn(r,z)

A(r,z) −i∆A(r,z)
A(r,z) +i(∇ϕn(r,z))2)A(r, z)eiϕn(r,z) .

In the last line, we used the smallness of the focal step
δz to write the expression appearing in the bracket of
the second line as an exponential. Note that this trans-
formation is only possible if the amplitude A 6= 0. This
reflects the fact that a large relative change of the wave
function may occur upon small propagation steps at
points, where the amplitude is zero. The Gerchberg-
Saxton algorithm proceeds by replacing the amplitude
in the plane z + δz with the experimental amplitude

A(r, z + dz) =
√
ρ(r, z + δz) in that plane

Ψn+1(r, z + δz) = e−i
δz

2k0
( ∆A(r,z)
A(r,z) −(∇ϕn(r,z))

2) (35)

× A(r, z + δz)eiϕn(r,z) .
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Consequently, the iterated phase reads

ϕn+1(r, z + δz) = ϕn(r, z) (36)

− δz

2k0

(
∆A(r, z)

A(r, z)
− (∇ϕn(r, z))

2

)
= ϕn(r, z) +

∂ϕn(r, z)

∂z
δz ,

where we inserted (33) in the last line.
The last equation reveals that the ordered Gerchberg-

Saxton iteration with small step size corresponds to the
(numerical) integration of the quantum Hamilton-Jacobi
equation starting from some deliberately chosen initial
wave function. Thus, the Gerchberg-Saxton algorithm
may be considered as conjugate to the phase retrieval
based on solving the Transport of Intensity Equation as
the coupled system of TIE and QHJE is equivalent to
the paraxial Klein-Gordon equation (31). Noting that
any starting guess ϕ0 yields a solution to the above inte-
gration, reconstructing the correct wave function under-
lying the observed intensities in the various focal planes
corresponds to single out the correct starting guess. The
latter may be accomplished by starting the integration
at the far field at underfocus and integrating until reach-
ing the far field at overfocus, because only the correct
solution(s) may be identified in the far field at overfocus
with the corresponding starting guess at underfocus af-
ter inversion of spatial coordinates. In other words, the
far field data is necessary to identify the self-consistent
solution(s) (and the pertaining periodic Bohm trajecto-
ries forming the characteristics of the quantum Hamilton-

Jacobi equation).
Relating the Gerchberg-Saxton algorithm with the nu-

merical integration of the (quantum) Hamilton-Jacobi
equation allows us to use the comprehensive Hamilton-
Jacobi theory for characterizing the algorithm. Within
the scope of this work, however, we are content with find-
ing an alternative justification for the long focal range
and leave questions, such as how many self-consistent so-
lutions, i.e., how many wave function possess the same
intensities in a long-range isotropic focal series to future
work. Nevertheless, we will encounter an example be-
low, where at least two different wave functions (i.e., not
differing by a mere phase offset only) may not be distin-
guished from their intensities in isotropic focal planes.

In practice, the focal step employed in a focal series is
too large to allow for a linear approximation of the propa-
gation as in (34). Therefore, the full (Fresnel) propagator
has to be employed to propagate the wave function from
focal plane to focal plane. Under these circumstances,
the direct interpretation of the algorithm as numerical
integrator of the quantum Hamilton Jacobi equation is
violated to a certain extent and one may not prove in a
rigorous way anymore that the true solution can be ob-
tained by exploring the space of starting conditions. In
fact, the larger defocus steps cause the Gerchberg-Saxton
iteration to deviate from the QHJ solution pertaining to
one particular starting wave by meandering in a com-
plicated way through QHJE solutions corresponding to
different starting waves while iterating. To get more in-
sight into this convergence behaviour we first note the
following bound for the distance between iterated wave
functions

‖Ψn(r, z)−Ψn−1(r, z)‖2 =
∥∥∥An(r, z)eiϕn(r,z) −A (r, z) eiϕn(r,z)

∥∥∥2 (37)

=

ˆ

A2
n(r, z) +A2(r, z)− 2A2 (r, z)A (r, z) d2r

≤
ˆ

A2
n(r, z) +A2(r, z)− 2A2 (r, z)A (r, z) cos (ϕn(r, z)− ϕ(r, z)) d2r

=
∥∥∥An(r, z)eiϕn(r,z) −A (r, z) eiϕ(r,z)

∥∥∥2 ,

which shows that one iteration step corresponds to an or-
thogonal projection on the closest representative from a
set of wave functions (with arbitrary ϕ) sharing the same
modulus A with the experimental value in that plane
(Fienup 1982). Consequently, the Gerchberg-Saxton al-
gorithm can be considered as an iterative projection al-
gorithm as used in convex optimization, with the crucial
difference between both settings being the non-convexity
of the set of wave functions sharing the same modulus
in some optical plane (see Figure 11). This feature pre-
vents the transfer of existence and convergence theorems
from the convex setting to the typical long-focal step

Gerchberg-Saxton iteration (cf. Figure 12 for a visual
representation of the problem). Accordingly, the algo-
rithm may fail to converge even if a consistent solution to
the focal series exists (which is typically not the case due
to noise, partial coherence, etc.). Note furthermore that
the solution depends on the initial guess in the under-
determined case (corresponding to incomplete focal series
typically recorded in the TEM) even in the convex set-
ting. These two characteristic properties again show the
susceptibility of the Gerchberg-Saxton algorithm with re-
spect to the starting guess, which has to be taken into
account in the focal series reconstruction.
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Ψ ∼ eiϕ Ψ ∼ e−iϕ

Figure 11. Polya plots of two vortex wave functions with the
same amplitude A = |Ψ |, where each vector corresponds to
a complex number in the complex plane. The complete set
of wave functions with the same amplitude is obtained by
arbitrarily changing the orientation of the vectors. Accord-
ingly, linear combinations of wave functions from this set,
Ψ =

∑
i ciΨi with

∑
ci = 1, generally do not belong to this

set. Consequently, the set of wave functions with the same
modulus is not convex.

overlapping convex sets

0

1

2
3

iteration
path

non-overlapping non-convex sets

0

Figure 12. Projection on overlapping convex versus non-
overlapping (i.e., inconsistent) non-convex sets. As long as
the convex sets are overlapping the iterative projection con-
verges to the intersection of the sets closest to the initial guess
of the iteration in the here depicted under-determined case.
In the non-convex setting the iteration may get trapped at
points of close distance between the sets, not reaching other
(and possibly better) solutions.

In spite of the above noted complicated convergence
behaviour, the large number of sensible solutions, which
have been obtained previously, shows that increased focal
step sizes do not necessarily invalidate the reconstruction
algorithm as such. Indeed, various strategies and con-
straints, mainly derived from the phase space perspec-
tive, are suited to stabilize the algorithm to a certain
extend as will be discussed below.

(A) First of all, we note that the phase space per-
spective is intimately connected to matrix completion
strategies (Candès et al. 2013), which have been success-
fully employed to transfer projections on non-convex sets

to underdetermined projections on convex sets, recently.
The crucial point here is that the set of phase space distri-
butions possessing the same projection in some direction
is convex, which allows us to lift the original Gerchberg-
Saxton projection on non-convex sets of complex wave
functions to convex sets of phase space distributions per-
taining to the same modulus in some plane. However,
the mixed state formulation of through focus reconstruc-
tions (i.e., quantum state tomography) discussed above
revealed that a set of line foci ranging from the far field
at underfocus via the in-focus plane to the far field at
overfocus and comprising all possible orientations of the
line focus is necessary to obtain a unique quantum state
reconstruction. Presently used stigmators do not permit
the acquisition of a line focal series from the near to the
far field, however. Thus, focal series typically comprise
only isotropically defocused images, although it has been
noted that the use of line foci in the near field reduces the
ambiguity of the reconstruction (Henderson et al. 2009,
Petersen and Keast 2007). Furthermore, in spite of sig-
nificant progress being achieved in the fields of image
registration (Meyer et al. 2002, Saxton 1994), aberra-
tion correction and aberration assessment (Meyer et al.
2002), it remains a formidable challenge to record and
register a long range isotropic defocus series free from
spurious aberrations, distortions, rotations and magnifi-
cation changes. To mitigate these issues focal series are
typically recorded in or close to the near field of the ob-
ject taking into account that the limited focal range limits
the focal series reconstruction of low spatial frequencies
(Haigh et al. 2013, Niermann and Lehmann 2016). More
recently, also non-linear defocus variations extending fur-
ther into the far field have been employed successfully in
various inline holography studies (Haigh et al. 2013, Koch
2014, Song et al. 2013) to increase the reconstructed spa-
tial frequency band. Because equal tilt intervals in phase
space correspond to non-equally spaced focal steps a non-
linear sampling of the defocus

δz (α) =
k0
k2σ

(tan (α+ δα)− tanα) (38)

δα�1
≈ 2k0

k2σ

1

cos (2α) + 1
δα

decreasing towards the far field is optimal in these studies
if seeking a minimal number of images in the focal series.
Here kσ corresponds to the characteristic width of the
wave function in Fourier space.

(B) To fulfill the support theorem of tomography (Hel-
gason 2011), the complete electron wave to be recon-
structed should be contained within the field of view
throughout the entire tilt series. In practice, however,
focal series reconstructions, in particular at the atomic
resolution regime, are frequently carried out for electron
beams being larger than the recorded field of view, hence
violating the tomographic support theorem. It has been
noted that the corresponding artifacts in the reconstruc-
tion may be mitigated to some extend by numerically
padding the intensity images with zeros, i.e., artificially
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introducing a boundary to the beam (Lin et al. 2006,
Ophus and Ewalds 2012).

(C) The alternating projection on convex sets in
the phase space setting corresponds to the Kaczmarz
(Kaczmarz 1937) (or Algebraic Reconstruction Tech-
nique (Gordon et al. 1970)) algorithm in the parlance
of tomography (Wei 2015). This analogy also suggests
that a non-convergence of the Gerchberg-Saxton algo-
rithm due to ubiquitous inconsistencies in the recorded
data, may be mitigated by combining all Kaczmarz it-
erations within one cycle, i.e, by projecting on all focal
planes simultaneously. This strategy is an adaption of
the Landweber algorithm or Sequential Iterative Recon-
struction Technique (SIRT) well-known from tomogra-
phy (Natterer and Wübbeling 2001) and forms the ba-
sis behind Allen’s improved Gerchberg-Saxton algorithm
(Allen et al. 2004). Figure 13 shows a modified version of
the latter, including the previously mentioned iteration
over the starting guess and some additional processing
step, which is used in the course of this work. Various
TEM studies employed similar variants of the Gerchberg-
Saxton algorithm and a commercial version of Allen’s
IFWR algorithm is available (Allen et al. 2004, Allen and
Oxley 2001, Koch 2008, 2014).

The above lines show that typically recorded focal se-
ries are not sufficient to guarantee a unique and error-free
reconstruction, which requires additional care in the in-
terpretation of the results, in particular because error
estimates are less straight-forward compared to off-axis
holography. Therefore, the application of additional as-
sumptions restricting the set of possible quantum states
can be very useful to further improve the quality of the
focal series reconstructions. Which assumptions can be
used and how they may be incorporated into efficient fo-
cal series reconstruction algorithms represents an active
area of research, bearing close analogies to the regulariza-
tion strategies discussed within the context of tomogra-
phy and compressive sensing in general. In the following
a short overview of possible strategies is given.

We first note that each step of the Gerchberg-Saxton
algorithm does not modify the topology of a wave func-
tion, which is given by the total winding number

w =
1

2π

˛

∂D

ds · ∇ϕ (39)

computed on the outer boundary ∂D of the electron
beam because only the amplitude is updated in the differ-
ently defocused planes. Thus, the topology of the start-
ing guess for the wave function is preserved throughout
the iteration (Martin and Allen 2007) and it is important
to endow the starting guess with the correct topology to
ensure convergence to the true solution. Unless working
with electron vortex beams (Lubk et al. 2013b, McMor-
ran et al. 2011, Verbeeck et al. 2010) the wave functions
making up a conventional TEM beam posses a trivial
topology (winding number equals zero), because elastic
scattering at the object does not change the topology of
the initial wave function. Consequently, a wave of trivial
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Figure 13. Modified Gerchberg-Saxton algorithm, where the
wave functions Ψm in the various focal planes (index m) are
computed simultaneously by propagating the actual iterated
wave function (iteration index n) from some predefined (fo-
cal) plane (e.g., z = 0). The affine alignment of the recorded
intensities with respect to the simulated wave functions may
optionally be inserted to correct for spurious image rotations,
magnification changes, distortions, etc. The regularization
before computing the updated wave function may be applied
to impose additional constraints, e.g., on the smoothness (reg-
ularity) of the wave. The iteration stops if some convergence
criteria (e.g., R-factor limit ε or maximal iteration number)
is reached.

topology has to be used as starting guess under these typ-
ical circumstances. This implicit restriction of the solu-
tion space present in almost all focal series reconstruction
from TEM images reported to date of this publication is
one of the main reasons for reasonable reconstructions
from restricted focal ranges. In case of an unknown wave
topology, it may also be possible to single out the correct
one by comparing the R-factors of the reconstructions
pertaining to different topologies. Note, however, that
such a test requires well-converged and unique solutions
for the different topologies, in order to ensure that the
inconsistencies due to an erroneous topology are not over-
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shadowed by partial coherence, alignment issues, noise,
etc.

Additional assumptions may pertain to a possible spar-
sity of the wave function in some basis, possible smooth-
ness (i.e., regularity) restrictions (Allen et al. 2004,
Parvizi et al. 2016), support constraints of the wave func-
tion (Latychevskaia et al. 2010) or positivity of the phase
shift. If inconsistent with the underlying wave function,
these constraints introduce additional regularization er-
rors (e.g., adding large gradients in the wave), which need
to be balanced against the dampened reconstruction er-
ror.

V. CASE STUDY

In the following we perform an exemplary focal se-
ries reconstruction of a higher order vortex beam, to
study the impact of the above principles, such as includ-
ing the far field images or predefining the topology of
the starting guess. The electron vortex beam has been
created by inserting a forked hologram grating (Grillo
et al. 2014, McMorran et al. 2011, Verbeeck et al. 2010)
(diameter= 10µm) into the condenser aperture of a FEI
Titan3 TEM operated at 300 kV. Such masks produce a
set of vortex beams of increasing order corresponding to
the various diffraction orders of the grating (Hecht 1987).
Here, we cut out one of the |w| = 3 sidebands with a
square aperture (side length= 2µm) in the selected area
plane. The focal series was recorded by varying the ex-
citation of the diffraction lens (see (Clark et al. 2016)
for details). A total number of 20 defocused images was
recorded by changing the excitation of the diffraction lens
from 32% to 60%. The calibration of the effective propa-
gation length and magnification was conducted with the
above methods. To further improve the accuracy of the
calibration, we employed a comparison with a simulated
reference series (see (Clark et al. 2016) for details). In
spite of using a large range of diffraction lens excitations,
the defocus values ranged from 0 (in-focus) to 0.14 m in
the far field at overfocus only. Thus, 90° of the associated
phase space tilt series are missing, which translates into
considerable missing information and needs to be taken
into account when evaluating the results.

To register the images, we aligned their center of mass
and image rotation with a non-linear fitting procedure
prior to the focal series reconstruction. Figure 14 shows
a subset of registered images from the series used for the
actual reconstruction. Subsequently, we carried out an
initial reconstruction with the help of the algorithm de-
picted in Figure 13 using a starting wave with w = 3
topology, where we performed an image registration step
after each 100 steps to remove spurious magnification
and rotation errors in the experimental data. Figure 14
exhibits the convergence behaviour of that run. The re-
sultant series was subsequently used in the following re-
constructions, where 500 iterations proved sufficient to
ensure a stable solution, when incorporating a small de-

focus into the starting guess.
In the middle row of Figure 14, we compare recon-

structions pertaining to different starting waves with
the help of their R-factor (see Figure 13). Accordingly,
the solutions fall into different equivalence classes distin-
guished by the topology of the starting wave. This be-
haviour is due to the preservation of topology within each
Gerchberg-Saxton iteration, as noted previously. In full
agreement with the imprinted topology due to the fork
aperture, the w = 3 reconstruction yields the best match
between experiment and reconstruction. The phase vor-
tices appear separated in the reconstruction, which is a
consequence of small manufacturing faults of the fork
aperture and a small misalignment of the square aper-
ture, which slightly breaks the 4-fold symmetry (Lubk
et al. 2013a). As a consequence of the only slightly bro-
ken four-fold symmetry, however, the w = −3 solution
may not be ruled out definitely. To clearly distinguish
between both solutions an astigmatic focal series would
be required.

In the following we use the correct w = 3 topology
to elaborate on various characteristics of the focal series
reconstructions. The above reconstructions have been
obtained without constraining the regularity (i.e., band
limit). Figure 15 shows two reconstructions with increas-
ing band limits imposed by multiplying a Gaussian low
pass in each iteration cycle, where the left column in Fig-
ure 15 corresponds to the right column in Figure 14. In
particular, if no regularity constraint is applied (maximal
spatial resolution), one observes several vortex-antivortex
pairs at the aperture corners. Their appearance is a hall-
mark of the above noted instability of the Gerchberg-
Saxton iteration at amplitude zeros, which get more pro-
nounced at higher resolutions progressively resolving the
interference phenomena at the aperture edges. Imple-
menting a regularity constraint allows us to smooth out
these interference effects, hence minimizing the number
of vortices. This effect of the low-pass filter resembles
that of partial coherence smearing out the zeros in the
recorded intensity (Allen et al. 2004). Reducing the band
limit beyond a certain limit eventually severely degrades
the reconstruction quality at the aperture edges, hence
increasing the R-factor. The observed variation in the
actual vortex positions indicates susceptibility of the vor-
tices to the iteration path and small changes in the re-
constructed amplitude.

Figure 16 displays reconstructions obtained from a
variation of different starting conditions. Again, the left
column displays the best fitting solution from Figure 14
for comparison. The other two solutions exhibit the sus-
ceptibility with respect to the initial defocus of the start-
ing wave, eventually leading to an expulsion of vortex
lines out from the ring-shaped intensity maximum, which
may not be reversed, even if extending the number of iter-
ations. On top of that, additional vortex-antivortex pairs
appear. These observations highlights the importance of
singling out a suitable starting wave in the focal series re-
construction. In the absence of previous knowledge one
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Figure 15. Focal series reconstruction of the vortex beam
using different regularity constraints (band limits).

may employ computationally demanding brute force test-
ing or more advanced strategies, such as employing TIE
reconstructions from a set of slightly defocused images
close to the starting plane of the iteration.

Figure 17 displays reconstructions obtained from trun-
cated focal series, where an increasing number of images
from the far field has been removed. As usual, the left col-
umn contains the original solution for comparison. Upon
removing far field images from the focal series data, one
observes almost no degradation of the quality of the re-
construction, in spite of the previously mentioned prob-
lematic reconstruction of small spatial frequencies in case
of restricted defocus intervals. This result demonstrates
that the conservation of topology implicitly restricts the
solution space of the Gerchberg-Saxton algorithm even
in the presence of an incomplete isotropic focal series.
However, the missing far field information eventually be-
comes obvious when comparing the R-factors pertaining
to different topology classes (Figure 17). Accordingly, the
different topologies may not be distinguished by their R-
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factors anymore, if the last two mostly defocused images
have been removed in our case.

VI. SUMMARY AND OUTLOOK

In summary, we elaborated on the theoretical founda-
tions as well as the algorithmic and experimental imple-
mentation of focal series inline holography. Employing
the correspondence between focal series phase retrieval
and tomographic reconstruction of the corresponding
Wigner function, we showed that a complete reconstruc-
tion may only be obtained from a long-range focal series

ranging from the far field at underfocus via the in-focus
image to the far-field at overfocus. Moreover, the elec-
tron beam has to be completely contained within the
field of view throughout the focal series. Typically, the
focal ranges employed in focal series reconstructions in
the TEM do not comply with these principles. In com-
bination with the ubiquitous experimental noise and the
violation of the pure state assumption due to partial co-
herence, reconstruction errors due to incompleteness (in
particular at low spatial frequencies) and inconsistencies
(in particular at large spatial frequencies) must, there-
fore, be taken into account.

To reduce reconstruction errors introduced by inaccu-
rate focal values and magnifications, we developed a cal-
ibration scheme for the diffraction lens (used here to fa-
cilitate the focal series), which may be adapted to other
lenses in a straight-forward manner. To improve the cali-
bration and hence the quality of the reconstruction, more
accurate wave propagation schemes through the extended
magnetic fields of the lenses are required, however. In
combination with more open information policies of the
microscope manufacturers that could eventually facilitate
the precise modeling and calibration of a whole TEM’s
optics including lenses, deflectors and apertures. Such
a virtual TEM would provide the means for a rapid de-
sign of novel optical setups (e.g., split illumination) or
the automated control of the TEM (fast focal series ac-
quisition). In the particular case of the focal series recon-
struction, it would be possible to identify optimal com-
binations of multiple lens excitations for a complete far
field at underfocus - in focus - far field at overfocus focal
series, presently not available within the TEM.

Subsequently, the archetypal Gerchberg-Saxton itera-
tive projection algorithm has been identified as a numer-
ical integration of the quantum Hamilton-Jacobi equa-
tion in the limit of small focus increments. It is read-
ily derived that the dependency of the integration on
the starting wave transfers to the Gerchberg-Saxton al-
gorithm. Again, the far-field data are crucial to single
out the correct starting wave in the iteration because in-
correct starting waves in the far-field at underfocus are
not matched by the corresponding quantum Hamilton-
Jacobi solution at the far field at overfocus. More ad-
vanced implications following from the analogy between
Gerchberg-Saxton and quantum Hamilton-Jacobi remain
to be explored in the future.

We further showed that the topology of the starting
guess is conserved throughout the Gerchberg-Saxton iter-
ation. Hence, the solutions pertaining to different start-
ing conditions may be separated into topology classes.
This implicit constraint mitigates incompleteness prob-
lem, if knowing the topology of the solution prior to the
reconstruction. This is usually the case as the typical
topology of a TEM beam is the trivial one. Moreover,
we showed that the different topology classes may be dis-
tinguished with the help of their reconstruction quality, if
the focal series comprises sufficient images in the far field.
The latter facilitates the topological characterization of
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beams in singular electron optics, which can serve as a
fingerprint for the orbital angular momentum of vortex
beams, even if the overall quality of the reconstruction
remains low (e.g., due to low signal-to-noise).

We conclude by noting that one of the biggest issues
of the above focal series reconstructions was the pres-
ence of partial coherence, violating the pure wave func-
tion assumption used throughout. The implementation
of a quantum state reconstruction from the focal series,
i.e., quantum state tomography can resolve that problem
facilitating the reconstruction of intrinsically incoherent
beams such as resulting from inelastic scattering (e.g., at

plasmons).
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Appendix A: Calibration of a Thick Lens

In the following a symmetric thick lens is modeled as
two identical refracting (i.e. phase shifting) surfaces at
distance D. The focal length of each surface is f = 2fthin
to ensure that the resulting thin lens in the limit D →
0 has focal length fthin. To establish the wave optical
transfer through such a thick lens, we first propagate
the wave from the object plane (located at distance zobj
to the plane of the first refracting plane) to that of the
second refracting plane, employing the previously derived
thin lens formula (10)

Ψ (r, D) =
f

2π (f −D)
e−i

k0
2(f−D)

r2
ˆ ∞

−∞
d2k′e

i
2k0

zobjD−f(z1+D)

f−D k′2Ψ̃ (k′, z1) ei
f

f−D rk′ . (A1)

The corresponding Fourier transform reads

Ψ̃ (k, D) =
f

4π2 (f −D)

ˆ ∞

−∞
d2re−i

k0
2(f−D)

r2
ˆ

d2k′e
i

2k0
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f−D k′2Ψ̃ (k′, z1) ei(

f
f−Dk′−k)r (A2)

=
f

2πik0
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d2k′ei
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e
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and we use that result to perform the second propagation via the second refracting surface to the (conjugate) recording
plane

Ψ (r, z) =
f

2π (f − z)
e−i

k0
2(f−z) r

2
ˆ ∞
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d2ke

i
2k0

−fz
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2

Ψ̃ (k, d) ei
f
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The obtained expression has a similar structure than the thin lens result in that an effective free-space propagation
together with an effective rescaling may be identified.

The product of these two terms

Mδz =

(
z1D − f (z1 +D − f)

f −D
+

f2

fz
f−z − f +D

)
fz − (f −D) (f − z)

f2
(A4)

=
D(f − z1)(f − z) + f (f(z1 + z)− 2z1z)

f2

occurs in the stationary phase approximation of the wave function used for evaluating the focal series of the small
grating for calibration. Taking into account that the associated focal length of one refracting plane reads f =
2/
(
CfI

2
)
, for the spacing between two diffraction orders we obtain

s = Mproj
λ

d

(
z + z1 +D −

(
z1z +

D

2
(z1 + z)

)
CfI

2 +
D

4
z1zC

2
fI

4

)
. (A5)

It can be readily verified that this result converges to the thin lens expression (22) in the limit D → 0. Expressing this
result in the image and object distance from the symmetry plane of the Dif lens zimg = z+D/2 and zobj = z1 +D/2,
we obtain

s = Mproj
λ

d
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2
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D

2
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4

)
If assuming a linear proportionality between the distance of the two refracting planes and the lens current

D (I) = CDI , (A7)

such as valid for the Glaser model of moderately excited lenses (Reimer 1989), we obtain a fourth-order polynomial
dependency of the distance between two adjacent diffraction orders and the lens current

s = Mproj
λ

d
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2
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C2
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4

)
.

We used this model to fit the unknown optical parameters
of the thick lens, yielding a very good agreement with the

experimental data (see Figure 7).
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Last but not least, we note the thick lens expressions
for the other two calibration experiments, i.e., the in-
focus images of the object and SA plane objects of known
size

M1,2 = MprojM
dif
1,2 (A9)

= Mproj
f1,2 − zimg +D/2

f1,2

= Mproj

(
1− CfI21,2

(
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.

Eliminating Mproj then yields
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2
1
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2

)
−M2
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2
2
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2

)
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(A10)

which can be solved for

Cf =
M2 −M1

M2I21
(
zimg − CDI1

2

)
−M1I22

(
zimg − CDI2

2

)
(A11)

and the post-magnification of the projector lenses

Mproj =
M1,2

1− CfI21,2
(
zimg − CDI1,2

2

) . (A12)

Accordingly, the three calibration experiments employed
for the “thin” Diffraction lens are also sufficient for model-
ing the Diffraction lens as a thick lens. All optical param-
eters shown in the main text are obtained from this thick
lens model. Possible sources for the remaining errors in
the calibrated parameters are the experimental errors of
the calibration experiments and the limited validity of
the proportionality between the lens thickness and the
current as well as the reciprocal focal length (refractive
power) and the squared lens current.


